Точечный и интервальный прогноз. Программирование в эконометрике

Средняя относительная по модулю ошибка

|Е ср | отн = |Е ср | / Y ср * 100% (3.4.25)

Эти показатели дают представление об абсолютной величине ошибки модели и о доле ошибки в процентном отношении к среднему значению результативного признака.

При использовании ретропрогноза - подхода, когда несколько последних уровней ряда оставляются в качестве проверочной последовательности - точность прогнозных оценок определяется на основе этих же показателей.

Лучшей по точности считается та модель, у которой все перечисленные характеристики имеют меньшую величину. Однако эти показатели по-разному отражают степень точности модели и потому нередко дают противоречивые выводы. Для однозначного выбора лучшей модели исследователь должен воспользоваться либо одним основным показателем, либо обобщенным критерием.

Идея социально-экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится и в прогнозируемом будущем. В этом смысле прогноз основан наэкстраполяции. Экстраполяция, проводимая в будущее, называетсяперспективной , а в прошлое – ретроспективной .

Прогнозирование методом экстраполяции базируется на следующих предположениях:

а) развитие исследуемого явления в целом описывается плавной кривой;

б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;

в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.

Поэтому надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предположения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.

На основе построенной модели рассчитываются точечные и интервальные прогнозы. Точечный прогноз на основе временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t =n +1, n +2,..., n +k .

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, имеет малую вероятность. Возникновение соответствующих отклонений объясняется следующими причинами.

1. Выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты.

2. Прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой. Поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту.


3. Тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид:

, (3.4.27)

Стандартная ошибка (среднеквадратическое отклонение от модели), m – количество факторов в модели, для линейной модели m = 1.

Коэффициент является табличным значением t-статистики Стьюдента при заданном уровне значимости и числе наблюдений. Если исследователь задает уровень вероятности попадания прогнозируемой величины внутрь доверительного интервала, равной 70%, то при n =9 = 1,12. При вероятности, равной 95%, = 2,36.

Для других моделей величина U(k) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.10), величина U зависит прямо пропорционально от точности модели, коэффициента доверительной вероятности степени углубления в будущее на k шагов вперед, т.е. на момент t = n+k, и обратно пропорциональна объему наблюдений. Доверительный интервал прогноза будет иметь следующие границы:

– верхняя граница прогноза = Y прогноз (n+k ) + U (k );

– нижняя граница прогноза = Y прогноз (n+k ) – U (k ).

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границей.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

§ 4.1. Доверительные интервалы прогноза

Заключительным этапом применения кривых роста является экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t, соответствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени определяется только одно значение прогнозируемого показателя.

На практике в дополнении к точечному прогнозу желательно определить границы возможного изменения прогнозируемого показателя, задать "вилку" возможных значений прогнозируемого показателя, т.е. вычислить прогноз интервальный.

Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:

1) субъективной ошибочностью выбора вида кривой;

2) погрешностью оценивания параметров кривых;

3) погрешностью, связанной с отклонением отдельных наблюдений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, определяется в виде:

(4.1.),

где n - длина временного ряда;

L -период упреждения;

Точечный прогноз на момент n+L;

Значение t-статистики Стьюдента;

Средняя квадратическая ошибка прогноза.

Предположим, что тренд характеризуется прямой:

Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содержат погрешность. Погрешность параметра приводит к вертикальному сдвигу прямой, погрешность параметра - к изменению угла наклона прямой относительно оси абсцисс. С учетом разброса конкретных реализаций относительно линий тренда, дисперсию можно представить в виде:

(4.2.),

где - дисперсия отклонений фактических наблюдений от расчетных;

Время упреждения, для которого делается экстраполяция;

N + L ;

t- порядковый номер уровней ряда, t=1,2, ... , n;

Порядковый номер уровня, стоящего в середине ряда,

=(n+1):2

Тогда доверительный интервал можно представить в виде:

(4.3.)

Обозначим корень в выражении (4.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= t a K . Тогда интервальная оценка будет иметь вид:

(4.4.)

Выражение, аналогичное (4.3.), можно получить для полинома второго порядка:

(4.5.)

или

(4.6.)

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:

(4.7.),

где - фактические значения уровней ряда,

Расчетные значения уровней ряда,

n- длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.

Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении , так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Рисунок 4.1. Доверительные интервалы прогноза для линейного тренда

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).

В таблице 4.1. приведены значения K* в зависимости от длины временного ряда n и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (n) значения K* уменьшаются, с ростом периода упреждения L значения K* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений n: чем больше длина ряда, тем меньшее влияние оказывает период упреждения L.


Таблица 4.1.

Значения К * для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7).

Линейный тренд

Параболический тренд

Длина ряда (n)

Период упреждения (L)

длина ряда (n)

период упреждения (L)

2,6380 2,8748 3,1399

2,4631 2,6391 2,8361

2,3422 2,4786 2,6310

2,2524 2,3614 2,4827

2,1827 2,2718 2,3706

2,1274 2,2017 2,2836

2,0837 2,1463 2,2155

2,0462 2,1000 2,1590

2,0153 2,0621 2,1131

1,9883 2,0292 2,0735

1,9654 2,0015 2,0406

1,9455 1,9776 2,0124

1,9280 1,9568 1,9877

1,9117 1,9375 1,9654

1,8975 1,9210 1,9461

1,8854 1,9066 1,9294

1,8738 1,8932 1,9140

1,8631 1,8808 1,8998

1,8538 1,8701 1,8876

3,948 5,755 8,152

3,459 4,754 6,461

3,144 4,124 5,408

2,926 3,695 4,698

2,763 3,384 4,189

2,636 3,148 3,808

2,536 2,965 3,516

2,455 2,830 3,286

2,386 2,701 3,100

2,330 2,604 2,950

2,280 2,521 2,823

2,238 2,451 2,717

2,201 2,391 2,627

2,169 2,339 2,549

2,139 2,293 2,481

2,113 2,252 2,422

2,090 2,217 2,371

2,069 2,185 2,325

2,049 2,156 2,284

§ 4.2. Проверка адекватности выбранных моделей

Проверка адекватности выбранных моделей реальному процессу (в частности, адекватности полученной кривой роста) строится на анализе случайной компоненты. Случайная остаточная компонента получается после выделения из исследуемого ряда систематической составляющей (тренда и периодической составляющей, если она присутствует во временном ряду). Предположим, что исходный временной ряд описывает процесс, не подверженный сезонным колебаниям, т.е. примем гипотезу об аддитивной модели ряда вида:

(4.8.)

Тогда ряд остатков будет получен как отклонения фактических уровней временного ряда () от выравненных, расчетных ( ):

(4.9.)

При использовании кривых роста вычисляют, подставляя в уравнения выбранных кривых соответствующие последовательные значения времени.

Принято считать, что модель адекватна описываемому процессу, если значения остаточной компоненты удовлетворяют свойствам случайности, независимости, а также случайная компонента подчиняется нормальному закону распределения.

При правильном выборе вида тренда отклонения от него будут носить случайный характер. Это означает, что изменение остаточной случайной величины не связано с изменением времени. Таким образом, по выборке, полученной для всех моментов времени на изучаемом интервале, проверяется гипотеза о зависимости последовательности значений от времени, или, что то же самое, о наличии тенденции в ее изменении. Поэтому для проверки данного свойства может быть использован один из критериев, рассматриваемых в разделе I, например, критерий серий.

Если вид функции, описывающей систематическую составляющую, выбран неудачно, то последовательные значения ряда остатков могут не обладать свойствами независимости, т.к. они могут коррелировать между собой. В этом случае говорят, что имеет место автокорреляция ошибок.

В условиях автокорреляции оценки параметров модели, полученные по методу наименьших квадратов, будут обладать свойствами несмещенности и состоятельности (с этими свойствами знакомятся в курсе математической статистики). В то же время эффективность этих оценок будет снижаться, а, следовательно, доверительные интервалы будут иметь мало смысла в силу своей ненадежности.

Существует несколько приемов обнаружения автокорреляции. Наиболее распространенным является метод, предложенный Д арби ным и Уотсоном. Критерий Д арби на-Уотсона связан с гипотезой о существовании автокорреляции первого порядка, т.е. автокорреляции между соседними остаточными членами ряда. Значение этого критерия определяется по формуле:

(4.10.)

Можно показать, что величина d приближенно равна:

d » 2(1- ) (4.11),

где - коэффициент автокорреляции первого порядка (т.е. парный коэффициент корреляции между двумя рядами и ).

Из последней формулы видно, что если в значениях имеется сильная положительная автокорреляция ( » 1), то величина d=0 , в случае сильной отрицательной автокорреляции ( » -1) d=4. При отсутствии автокорреляции ( » 0) d=2.

Для этого критерия найдены критические границы, позволяющие принять или отвергнуть гипотезу об отсутствии автокорреляции. Авторами критерия границы определены для 1, 2,5 и 5% уровней значимости . Значения критерия Д арби на-Уотсона при 5% уровне значимости приведены в таблице 4.2. В этой таблице и - соответственно нижняя и верхняя доверительные границы критерия Д арби на-Уотсона; - число переменных в модели; n - длина временного ряда.

Таблица 4.2.

Значения критерия Д арби на-Уотсона d 1 и d 2 при 5% уровне значимости

1,08

1,13

1,16

1,18

1,22

1,”4

1,26

1,27

1,29

1,32

1,33

1,34

1,35

1,36

1,37

1,38

1,49

1,41

1,36

1,37

1,38

1,39

1,41

1,42

1,43

1,44

1,45

1,45

1,46

1,47

1,48

1,48

1,49

1,51

1,51

1,52

1,52

0,95

0,98

1,02

1,05

1,08

1,13

1,15

1,17

1,19

1,21

1,22

1,24

1,26

1,27

1,28

1,31

1,32

1,33

1,34

1,35

1,54

1,54

1,54

1,53

1,53

1,54

1,54

1,54

1,54

1,55

1,55

1,55

1,56

1,56

1,56

1,57

1,57

1,57

1,58

1,58

1,58

1,59

0,82

0,86

0,93

0,97

1,03

1,05

1,08

1,12

1,14

1,16

1,18

1,21

1,23

1,24

1,26

1,27

1,28

1,29

1,75

1,73

1,71

1,69

1,68

1,68

1,67

1,66

1,66

1,66

1,66

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

1,65

Применение на практике критерия Д арби на-Уотсона основано на сравнении величины d, рассчитанной по формуле (4.10.), с теоретическими значениями d 1 и d 2 , взятыми из таблицы. Отметим, что большинство программных пакетов статистической обработки данных осуществляет расчет этого критерия (например, ППП "Олимп", "Мезозавр", "Statistica" и др.).

При сравнении величины d с и возможны следующие варианты:

1) Если d < , то гипотеза о независимости случайных отклонений (отсутствие автокорреляции) отвергается;

2) Если d > , то гипотеза о независимости случайных отклонений не отвергается;

3) Если £ d £ , то нет достаточных оснований для принятия решений, т.е. величина попадает в область "неопределенности".

Рассмотренные варианты относятся к случаю, когда в остатках имеется положительная автокорреляция.

Когда же расчетное значение d превышает 2, то можно говорить о том, что в существует отрицательная автокорреляция.

Для проверки отрицательной автокорреляции с критическими значениями и сравнивается не сам коэффициент d, а 4-d.

Для определения доверительных интервалов модели свойство нормальности распределения остатков имеет важное значение . Поскольку временные ряды экономических показателей, как правило, невелики (<50), то проверка распределения на нормальность может быть произведена лишь приближенно, например, на основе исследования показателей асимметрии и эксцесса.

При нормальном распределении показатели асимметрии (А) и эксцесса (Э) равны нулю. Так как мы предполагаем, что отклонения от тренда представляют собой выборку из некоторой генеральной совокупности, то можно определить выборочные характеристики асимметрии и эксцесса, а также их среднеквадратические ошибки.

Если выполняется хотя бы одно из неравенств

(4.17.),

то гипотеза о нормальном характере распределения отвергается.

Другие случаи требуют дополнительной проверки с помощью более мощных критериев.

Пример 4.1.

Программа выдала следующие характеристики ряда остатков:

длина ряда n=20;

коэффициент асимметрии А =0,6;

Коэффициент эксцесса Э=0,7.

На основании этих характеристик можно считать, что:

а) случайная компонента подчиняется нормальному закону распределения;

б) случайная компонента не подчиняется нормальному закону распределения;

в) требуется дополнительная проверка характера распределения случайной компоненты.

Решение:

Определим:


Т. к. одновременно выполняются оба неравенства


§ 4.3. Характеристики точности моделей

Важнейшими характеристиками качества модели, выбранной для прогнозирования, являются показатели ее точности. Они описывают величины случайных ошибок, полученных при использовании модели. Таким образом, чтобы судить о качестве выбранной модели, необходимо проанализировать систему показателей, характеризующих как адекватность модели, так и ее точность.

На практике широко используется относительная ошибка прогноза, выраженная в процентах относительно фактического значения показателя:

(4.19.)

Также используются средние ошибки по модулю (абсолютные и относительные):

(4.20.),

Где n- число уровней временного ряда, для которых определялось прогнозное значение.

Из (4.18.), (4.19.) видно, что если абсолютная и относительная ошибка больше 0, то это свидетельствует о "завышенной" прогнозной оценке, если - меньше 0, то прогноз был занижен.

Очевидно, что все указанные характеристики могут быть вычислены после того, как период упреждения уже окончился, и имеются фактические данные о прогнозируемом показателе или при рассмотрении показателя на ретроспективном участке.

В последнем случае имеющаяся информация делится на две части: по первой - оцениваются параметры модели, а данные второй части рассматриваются в качестве фактических. Ошибки прогнозов, полученные ретроспективно (на втором участке) характеризуют точность применяемой модели.

На практике при проведении сравнительной оценки моделей могут использоваться такие характеристики качества как дисперсия () или среднеквадратическая ошибка прогноза (S):

(4.21.).

Чем меньше значения этих характеристик, тем выше точность модели.

О точности модели нельзя судить по одному значению ошибки прогноза. Например, если прогнозная оценка месячного уровня производства в июне совпала с фактическим значением, то это не является достаточным доказательством высокой точности модели. Надо учитывать, что единичный хороший прогноз может быть получен и по плохой модели, и наоборот.

Следовательно, о качестве применяемых моделей можно судить лишь по совокупности сопоставлений прогнозных значений с фактическими .

Простой мерой качества прогнозов может стать m - относительное число случаев, когда фактическое значение охватывалось интервальным прогнозом:

(4.22.),

где р - число прогнозов, подтвержденных фактическими данными;

q - число прогнозов, не подтвержденных фактическими данными.

Когда все прогнозы подтверждаются, q=0 и m =1.

Если же все прогнозы не подтвердились, то р =0 и m =0.

Отметим, что сопоставление коэффициентов m для разных моделей может иметь смысл при условии, что доверительные вероятности приняты одинаковыми.

Точечный прогноз на основе временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t =n +1, n +2,..., n +k .

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, имеет малую вероятность.

Возникновение соответствующих отклонений объясняется следующими причинами.

1. Выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты.

2. Прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой. Поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту.

3. Тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов.

Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели, т.е. степени ее близости к фактическим данным, числа наблюдений, горизонта прогнозирования и выбранного пользователем уровня вероятности.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид:

, (1.27)

Стандартная ошибка (среднеквадратическое отклонение от модели),

m – количество факторов в модели, для линейной модели m = 1.

Коэффициент является табличным значениемt-статистики Стьюдента при заданном уровне значимости и числе наблюдений.

Если исследователь задает уровень вероятности попадания прогнозируемой величины внутрь доверительного интервала, равной 70%, то при n =9 = 1,12.

При вероятности, равной 95%, = 2,36.

Для других моделей величина U(k) рассчитывается аналогичным образом, но имеет более громоздкий вид.

Как видно из формулы (1.10), величина U зависит прямо пропорционально от точности модели, коэффициента доверительной вероятности степени углубления в будущее на k шагов вперед, т.е. на момент t = n+k, и обратно пропорциональна объему наблюдений.

Доверительный интервал прогноза будет иметь следующие границы:

– верхняя граница прогноза = Y прогноз (n+k ) + U (k );

– нижняя граница прогноза = Y прогноз (n+k ) – U (k ).

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границей.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

Пример 1.5

Финансовый директор АО «Веста» рассматривает целесообразность ежемесячного финансирования инвестиционного проекта со следующими объемами нетто-платежей, тыс. руб.:

45 40 43 48 42 47 51 55 50 57 60 62.

Требуется определить:

1) Линейную модель зависимости объемов платежей от сроков (времени).

2) Оценить адекватность и точность построенной модели на основе исследования:

  • случайности остаточной компоненты по критерию пиков;
  • независимости уровней ряда остатков по d- критерию (в качестве критических значений следует использовать уровни d 1 = 1,08 и d 2 = 1,36) и по первому коэффициенту автокорреляции, критический уровень которого r (1) = 0,36;
  • нормальности распределения остаточной компоненты по RS- критерию с критическими уровнями 2,7 – 3,7;
  • для оценки точности модели используйте среднеквадратическое отклонение и среднюю по модулю относительную ошибку;

3) Определить размеры платежей на 3 последующих месяца (построить точечный и интервальный прогнозы на два шага вперед (для вероятности
Р=
90% используйте коэффициент = 1,812) отобразить на графике фактические данные, результаты расчетов и прогнозирования). Оценить целесообразность финансирования этого проекта, если в следующем квартале на эти цели фирма может выделить только 120 тыс.руб.

1) оценка параметров модели.

Оценка параметров модели с помощью надстройки EXCEL Анализ данных .

Построим линейную модель регрессии Y от t . Для проведения регрессионного анализа выполните следующие действия:

· Выберите команду Сервис Þ Анализ данных.

· В диалоговом окне Анализ данных выберите инструмент Регрессия, а затем щелкните на кнопке ОК.

· В диалоговом окне Регрессияв поле Входной интервал Y введите адрес одного диапазона ячеек, который представляет зависимую переменную. В поле Входной интервал Х введите адрес диапазона, который содержат значения независимой переменной t Если выделены и заголовки столбцов, то установить флажок Метки в первой строке.

· Выберите параметры вывода. В данном примере Новая рабочая книга.

· В поле График подбора поставьте флажок.

· В поле Остатки поставьте необходимые флажки и нажмите кнопку ОК.

Результат регрессионного анализа содержится в нижеприведенных таблицах (табл. 1.13 и 1.14)

Таблица 1.13

Переменная Коэффициенты Стандартная ошибка t-статистика
Y -пересечение a 0 38,227 1,955 19,554
t a 1 1,811 0,266 6,818

Таблица 1.14. ВЫВОД ОСТАТКА

Наблюдение Предсказанное Y Остатки
40,038 4,962
41,850 -1,850
43,661 -0,661
45,472 2,528
47,283 -5,283
49,094 -2,094
50,906 0,094
52,717 2,283
54,528 -4,528
56,339 0,661
58,150 1,850
59,962 2,038

Во втором столбце табл. 1.13 содержатся коэффициенты уравнения регрессии a 0 , a 1 , в третьем столбце – стандартные ошибки коэффициентов уравнения регрессии, а в четвертом – t-статистика, используемая для проверки значимости коэффициентов уравнения регрессии.

Уравнение регрессии зависимости объемов платежей от сроков (времени) имеет вид:

.

Оценка параметров модели по формуле (3.5) «вручную».

Промежуточные расчеты параметров линейной модели по формулам (1.5) приведены в табл. 1.15.

-5,5 30,25 -5 27,5 40,04 4,96
-4,5 20,25 -10 41,85 -1,85
-3,5 12,25 -7 24,5 43,66 -0,66
-2,5 6,25 -2 45,47 2,53
-1,5 2,25 -8 47,28 -5,28
-0,5 0,25 -3 1,5 49,09 -2,09
0,5 0,25 0,5 50,91 0,09
1,5 2,25 7,5 52,72 2,28
2,5 6,25 54,53 -4,53
3,5 12,25 24,5 56,34 0,66
4,5 20,25 58,15 1,85
5,5 30,25 59,96 2,04
6,5

При вычислении «вручную» по формуле (1.4) получаем те же результаты:

,

A B C D E F G H
ВЫЧИСЛЕНИЯ В EXCEL С ИСПОЛЬЗОВАНИЕМ ФОРМУЛ
=B2-$J$15 =D2*D2 =C2-$K$15 =D2*F2 =$M$21+$M$18*B2 =C2-H2
=B3-$J$15 =D3*D3 =C3-$K$15 =D3*F3 =$M$21+$M$18*B3 =C3-H3
=B4-$J$15 =D4*D4 =C4-$K$15 =D4*F4 =$M$21+$M$18*B4 =C4-H4
=B5-$J$15 =D5*D5 =C5-$K$15 =D5*F5 =$M$21+$M$18*B5 =C5-H5
=B6-$J$15 =D6*D6 =C6-$K$15 =D6*F6 =$M$21+$M$18*B6 =C6-H6
=B7-$J$15 =D7*D7 =C7-$K$15 =D7*F7 =$M$21+$M$18*B7 =C7-H7
=B8-$J$15 =D8*D8 =C8-$K$15 =D8*F8 =$M$21+$M$18*B8 =C8-H8
=B9-$J$15 =D9*D9 =C9-$K$15 =D9*F9 =$M$21+$M$18*B9 =C9-H9
=B10-$J$15 =D10*D10 =C10-$K$15 =D10*F10 =$M$21+$M$18*B10 =C10-H10
=B11-$J$15 =D11*D11 =C11-$K$15 =D11*F11 =$M$21+$M$18*B11 =C11-H11
=B12-$J$15 =D12*D12 =C12-$K$15 =D12*F12 =$M$21+$M$18*B12 =C12-H12
=B13-$J$15 =D13*D13 =C13-$K$15 =D13*F13 =$M$21+$M$18*B13 =C13-H13
=СРЗНАЧ (A2:A13) =СРЗНАЧ (B2:B13) =СУММ (D2:D13) =СУММ (F2:F13) =СУММ (H2:H13)
a1= =G14/E14
a0= =C14-E17*B14

2) оценка качества построенной модели.

2.1) Оценка адекватности

Для оценки адекватности построенных моделей исследуются свойства остаточной компоненты, т.е. расхождения уровней, рассчитанных по модели, и фактических наблюдений (табл. 1.17).

Точки поворота
4,962 24,617
-1,850 * 3,421 46,392
-0,661 0,437 1,413
2,528 * 6,391 10,169
-5,283 * 27,912 61,015
-2,094 4,387 10,169
0,094 0,009 4,791
2,283 * 5,213 4,791
-4,528 * 20,503 46,392
0,661 0,437 26,924
1,850 3,421 1,413
2,038 4,155 0,036
100,902 213,504

· При проверке независимости (отсутствие автокорреляции) определяется отсутствие в ряду остатков систематической составляющей, например, с помощью d-критерия Дарбина–Уотсона по формуле (1.7):

Так как попало в интервал от d 2 , до 2 то по данному критерию можно сделать вывод о выполнении свойства независимости.

Это означает, что в ряду динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

· Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек (формула (1.6)). Количество поворотных точек (p ) равно 5 (рис. 1.14).

Неравенство выполняется (5>4). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

Рис. 1.14 . График остатков

· Соответствие ряда остатков нормальному закону распределения определим при помощи RS-критерия:

RS= [ max – min ] / ;

где max максимальный уровень ряда остатков, max = 4,9 62;

min минимальный уровень ряда остатков, min = 4, 528;

среднеквадратическое отклонение,

= = = 3,029;

RS = / 3, 029= 3, 383

Расчетное значение попадает в интервал (2,7 – 3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

· Проверка равенства нулю математического ожидания уровней ряда остатков.

В нашем случае = 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

В табл. 1.18собраны данные анализа ряда остатков.

Таблица 1.18. Анализ ряда остатков

2.2) Оценка точности

Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации

Таблица 1.19.

Номер наблюдения
4,96 0,110
-1,85 0,046
-0,66 0,015
2,53 0,053
-5,28 0,126
-2,09 0,045
0,09 0,002
2,28 0,042
-4,53 0,091
0,66 0,012
1,85 0,031
2,04 0,033

2) Размеры платежей составят 61,77 , 63,58 , 65,40 тыс. руб.

3) Денежных средств в объеме 120 тыс. руб. на финансирование этого инвестиционного проекта на 3 последующие месяца будет недостаточно, поэтому нужно либо изыскать дополнительные средства, либо отказаться от этого проекта.

Контрольные вопросы:

1.Основные понятия и определения временного ряда.

2.Основная цель статистического анализа временных рядов.

3.Какие требования предъявляются к исходной информации?

4.Какие этапы построения прогноза по временным рядам?

5.Перечислите процедуры анализа данных и их содержание.

6.Перечислите способы обнаружения тренда и их содержание.

7.Из - за каких причин проводится сглаживание временных рядов?

8.Раскройте содержание метода простой скользящей средней сглаживания временного ряда.

9. Раскройте содержание метода взвешенной скользящей средней.

10.Когда применяется метод экспоненциального сглаживания наблюдений временного ряда и его содержание?

11.Перечислите показатели развития динамики экономических процессов.

12.Что означает автокорреляция временного ряда?

13.Как вычислить коэффициент автокорреляции?

14.Для чего строятся модели временных рядов?

15.Что означает «кривая роста» показателей временного ряда?

16.Как производится оценка качества построенной модели?

17.Как оценивается точность модели?

18.Какой порядок расчета точечных интервальных прогнозов?

Литература

1. Эконометрика : Учебник / Под ред. И.И.Елисеевой. - 2-е изд.; перераб. и доп. - М.: Финансы и статистика, 2005. - 576с.

2. Практикум по эконометрике : Учебное пособие / Под ред. Елисеевой И.И. - М.: Финансы и статистика, 2001,2002,2003,2004. - 192с

3. Айвазян С.А., Мхитарян В.С . Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998.

4. Орлов А.И. Эконометрика: Учеб. пособие для вузов – М.: «Экзамен», 2002.


Экстраполяция - это распространение выявленных при анализе рядов динамики закономерностей развития изучаемого объекта на будущее (при предположении, что выявленная закономерность, выступающая в качестве базы прогнозирования, сохраняется и в дальнейшем).

Табличное значение t кр можно получить с помощью функции EXCEL СТЬЮДРАСПОБР.

В фактически действующих ценах соответствующих лет.
Источник - "Краткосрочные экономические показатели РФ". Госкомстат, Москва.

Значение можно получить с помощью функции Excel СТЬЮДРАСПОБР.

Одной из центральных задач эконометрического моделирования является предсказание (прогнозирование) значений зависимой переменной при определенных значениях объясняющих переменных при определенных значениях объясняющих переменных. Здесь возможен двоякий подход: либо предсказать условное математическое ожидание зависимой переменной (предсказание среднего значения ), либо прогнозировать некоторое конкретное значение зависимой переменной (предсказание конкретного значения ).

Замечание. Некоторые авторы различают такие понятия, как прогнозирование и предсказание. Если значение объясняющей переменной X известно точно, то оценивание зависимой переменной Y называется предсказанием . Если же значение объясняющей переменной X неизвестно точно, то говорят, что делается прогноз значения Y . Такая ситуация характерна для временных рядов. В данном случае мы не будем различать предсказание и прогноз.

Различают точечное и интервальное прогнозирование. В первом случае оценка – некоторое число, во втором – интервал, в котором находится истинное значение зависимой переменной с заданным уровнем значимости.

а) Предсказание среднего значения . Пусть построено уравнение парной регрессии , на основе которого необходимо предсказать условное математическое ожидание . В данном случае значение является точечной оценкой . Тогда естественно возникает вопрос, как сильно может отклониться модельное значение , рассчитанное по эмпирическому уравнению, от соответствующего условного математического ожидания. Ответ на этот вопрос даётся на основе интервальных оценок, построенных с заданным уровнем значимости a при любом конкретном значении x p объясняющей переменной.

Запишем эмпирическое уравнение регрессии в виде

Здесь выделены две независимые составляющие: средняя и приращение . Отсюда вытекает, что дисперсия будет равна

Из теории выборки известно, что

Используя в качестве оценки s 2 остаточную дисперсию S 2 , получим



Дисперсия коэффициента регрессии, как уже было показано

Подставляя найденные дисперсии в (5.41), получим

. (5.56)

Таким образом, формула расчета стандартной ошибки предсказываемого по линии регрессии среднего значения Y имеет вид

. (5.57)

Величина стандартной ошибки , как видно из формулы, достигает минимума при , и возрастает по мере удаления от в любом направлении. Иными словами, больше разность между и , тем больше ошибка с которой предсказывается среднее значение y для заданного значения x p . Можно ожидать наилучшие результаты прогноза, если значения x p находятся в центре области наблюдений X и нельзя ожидать хороших результатов прогноза по мере удаления от .

Случайная величина

(5.58)

имеет распределение Стьюдента с числом степеней свободы n=n –2 (в рамках нормальной классической модели ). Следовательно, по таблице критических точек распределения Стьюдента по требуемому уровню значимости a и числу степеней свободы n=n –2 можно определить критическую точку , удовлетворяющую условию

.

С учетом (5.46) имеем:

.

Отсюда, после некоторых алгебраических преобразований, получим, что доверительный интервал для имеет вид:

, (5.59)

где предельная ошибка D p имеет вид

. (5.60)

Из формул (5.57) и (5.60) видно, что величина (длина) доверительного интервала зависит от значения объясняющей переменной x p : при она минимальна, а по мере удаления x p от величина доверительного интервала увеличивается (рис. 5.4). Таким образом, прогноз значений зависимой переменной Y по уравнению регрессии оправдан, если значение x p объясняющей переменной X не выходит за диапазон ее значений по выборке (причем более точный, чем ближе x p к ). Другими словами, экстраполяция кривой регрессии, т.е. её использование вне пределов обследованного диапазона значений объясняющей переменной (даже если она оправдана для рассматриваемой переменной исходя из смысла решаемой задачи) может привести к значительным погрешностям .

б) Предсказание индивидуальных значений зависимой переменной . На практике иногда более важно знать дисперсию Y , чем ее средние значения или доверительные интервалы для условных математических ожиданий. Это связано с тем, что фактические значения Y варьируют около среднего значения . Индивидуальные значения Y могут отклоняться от на величину случайной ошибки e, дисперсия которой оценивается как остаточная дисперсия на одну степень свободы S 2 . Поэтому ошибка предсказываемого индивидуального значения Y должны включать не только стандартную ошибку , но и случайную ошибку S . Это позволяет определять допустимые границы для конкретного значения Y .

Пусть нас интересует некоторое возможное значение y 0 переменной Y при определенном значении x p объясняющей переменной X . Предсказанное по уравнению регрессии значение Y при X =x p составляет y p . Если рассматривать значение y 0 как случайную величину Y 0 , а y p – как случайную величину Y p , то можно отметить, что

,

.

Случайные величины Y 0 и Y p являются независимыми, а следовательно, случайная величина U = Y 0 –Y p имеет нормальное распределение с

И . (5.61)

Используя в качестве s 2 остаточную дисперсию S 2 , получим формулу расчета стандартной ошибки предсказываемого по линии регрессии индивидуального значения Y :

. (5.63)

Случайная величина

(5.64)

имеет распределение Стьюдента с числом степеней свободы k =n –2. На основании этого можно построить доверительный интервал для индивидуальных значений Y p :

, (5.65)

где предельная ошибка D u имеет вид

. (5.66)

Заметим, что данный интервал шире доверительного интервала для условного математического ожидания (см. рис. 5.4).

Пример 5.5. По данным примеров 5.1-5.3 рассчитать 95%-ый доверительный интервал для условного математического ожидания и индивидуального значения при x p =160.

Решение. В примере 5.1 было найдено . Воспользовавшись формулой (5.48), найдем предельную ошибку для условного математического ожидания

Тогда доверительный интервал для среднего значения на уровне значимости a=0,05 будет иметь вид

Другими словами, среднее потребление при доходе 160 с вероятностью 0,95 будет находиться в интервале (149,8; 156,6).

Рассчитаем границы интервала, в котором будет сосредоточено не менее 95% возможных объёмов потребления при уровне дохода x p =160, т.е. доверительный интервал для индивидуального значения . Найдем предельную ошибку для индивидуального значения

Тогда интервал, в котором будут находиться, по крайней мере, 95% индивидуальных объёмов потребления при доходе x p =160, имеет вид

Нетрудно заметить, что он включает в себя доверительный интервал для условного среднего потребления. â

ПРИМЕРЫ

Пример 5.65. По территориям региона приводятся данные за 199X г. (таб. 1.1).

2. Построить линейное уравнение парной регрессии y на x и оценить статистическую значимость параметров регрессии. Сделать рисунок.

3. Оценить качество уравнения регрессии при помощи коэффициента детерминации. Проверить качество уравнения регрессии при помощи F -критерия Фишера.

4. Выполнить прогноз заработной платы y при прогнозном значении среднедушевого прожиточного минимума x , составляющем 107% от среднего уровня. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал для уровня значимости a=0,05. Сделать выводы.

Решение

1. Для определения степени тесноты связи обычно используют коэффициент корреляции :

где , – выборочные дисперсии переменных x и y . Для расчета коэффициента корреляции строим расчетную таблицу (табл. 5.4):

Таблица 5.4

x y xy x 2 y 2 e 2
148,77 -15,77 248,70
152,45 -4,45 19,82
157,05 -23,05 531,48
149,69 4,31 18,57
158,89 3,11 9,64
174,54 20,46 418,52
138,65 0,35 0,13
157,97 0,03 0,00
144,17 7,83 61,34
157,05 4,95 24,46
146,93 12,07 145,70
182,83 -9,83 96,55
Итого 1574,92
Среднее значение 85,58 155,75 13484,00 7492,25 24531,42

По данным таблицы находим:

, , , ,

, , , ,

, .

Таким образом, между заработной платой (y) и среднедушевым прожиточным минимумом (x) существует прямая достаточно сильная корреляционная зависимость .

Для оценки статистической значимости коэффициента корреляции рассчитаем двухсторонний t-критерий Стьюдента :

который имеет распределение Стьюдента с k =n –2 и уровнем значимости a. В нашем случае

и .

Поскольку , то коэффициент корреляции существенно отличается от нуля.

Для значимого коэффициента можно построить доверительный интервал , который с заданной вероятностью содержит неизвестный генеральный коэффициент корреляции. Для построения интервальной оценки (для малых выборок n <30), используют z-преобразование Фишера :

Распределение z уже при небольших n является приближенным нормальным распределением с математическим ожиданием и дисперсией . Поэтому вначале строят доверительный интервал для M[z ], а затем делают обратное z -преобразование. Применяя z -преобразование для найденного коэффициента корреляции, получим

Доверительный интервал для M(z ) будет иметь вид

,

где t g находится с помощью функции Лапласа F(t g)=g/2. Для g=0,95 имеем t g =1,96. Тогда

или . Обратное z -преобразование осуществляется по формуле

В результате находим

.

В указанных границах на уровне значимости 0,05 (с надежностью 0,95) заключен генеральный коэффициент корреляции r.

2. Таким образом, между переменными x и y имеет существенная корреляционная зависимость. Будем считать, что эта зависимость является линейной. Модель парной линейной регрессии имеет вид

,

где y – зависимая переменная (результативный признак), x – независимая (объясняющая) переменная, e – случайные отклонения, b 0 и b 1 – параметры регрессии. По выборке ограниченного объема можно построить эмпирическое уравнение регрессии:

где b 0 и b 1 – эмпирические коэффициенты регрессии. Для оценки параметров регрессии обычно используют метод наименьших квадратов (МНК ). В соответствие с МНК, сумма квадратов отклонений фактических значений зависимой переменной y от теоретических была минимальной:

,

где отклонения y i от оцененной линии регрессии. Необходимым условием существования минимума функции двух переменных является равенство нулю ее частных производных по неизвестным параметрам b 0 и b 1 . В результате получаем систему нормальных уравнений:

Решая эту систему, найдем

, .

По данным таблицы находим

Получено уравнение регрессии:

Параметр b 1 называется коэффициентом регрессии . Его величина показывает среднее изменение результата с изменением фактора на одну единицу. В рассматриваемом случае, с увеличением среднедушевого минимума на 1 руб. среднедневная заработная плата возрастает в среднем на 0,92 руб .

,

где F подчиняется распределению Фишера с уровнем значимости a и степенями свободы k 1 =1 и k 2 =n –2. В нашем случае

.

Поскольку критическое значение критерия равно

и , то признается статистическая значимость построенного уравнения регрессии. Отметим, что для линейной модели F - и t -критерии связаны равенством , что можно использовать для проверки расчётов.

4. Полученные оценки уравнения регрессии позволяют использовать его для прогноза. Прогнозное значение y p определяется путем подстановки в уравнение регрессии (1.16) соответствующего (прогнозного) значения x p

ЛЕКЦИЯ 5 99

§5.2. Анализ точности оценок коэффициентов регрессии 99

5.2.1. Оценка дисперсии случайного отклонения 99

5.2.2. Проверка гипотез относительно коэффициентов регрессии 100

5.2.3. Интервальные оценка коэффициентов регрессии 103

§5.3. Показатели качества уравнения регрессии 104

5.3.1. Коэффициент детерминации 104

5.3.2. Проверка общего качества уравнения регрессии: F-тест 106

5.3.3. Проверка общего качества уравнения регрессии: t-тест 108

§5.4. Интервалы прогноза по уравнению регрессии 108

Прогнозирование экономических показателей на основе трендовых моделей, как и большинство других методов экономического прогнозирования, основано на идее экстраполяции. Как уже сказано выше, под экстраполяцией обычно понимают распространение закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы. В более широком смысле слова ее рассматривают как получение представлений о будущем на основе информации, относящейся к прошлому и настоящему. В процессе построения прогнозных моделей в их структуру иногда закладываются элементы будущего предполагаемого состояния объекта или явления, но в целом эти модели отражают закономерности, наблюдаемые в прошлом и настоящем, поэтому достоверный прогноз возможен лишь относительно таких объектов и явлений, которые в значительной степени детерминируются прошлым и настоящим.

Существуют две основные формы детерминации: внутренняя и внешняя. Внутренняя детерминация, или самодетерминация, более устойчива, ее проще идентифицировать с использованием экономико-математических моделей. Внешняя детерминация определяется большим числом факторов, поэтому учесть их все практически невозможно. Если некоторые методы моделирования, например адаптивные, отражают общее совокупное влияние на экономическую систему внешних факторов, т.е. отражают внешнюю детерминацию, то методы, базирующиеся на использовании трендовых моделей экономических процессов, представленных одномерными временными рядами, отражают внутреннюю детерминацию объектов и явлений.

При экстраполяционном прогнозировании экономической динамики на основе временных рядов с использованием трендовых моделей выполняются следующие основные этапы:

  • 1) предварительный анализ данных;
  • 2) формирование набора моделей (например, набора кривых роста), называемых функциями-кандидатами;
  • 3) численное оценивание параметров моделей;
  • 4) определение адекватности моделей;
  • 5) оценка точности адекватных моделей;
  • 6) выбор лучшей модели;
  • 7) получение точечного и интервального прогнозов;
  • 8) верификация прогноза.

Порядок реализации первых шести этапов из перечисленных описан в предыдущих параграфах данной главы. Рассмотрим более подробно два заключительных этапа.

Прогноз на основании трендовых моделей (кривых роста) содержит два элемента: точечный и интервальный прогнозы. Точечный прогноз – это прогноз, которым называется единственное значение прогнозируемого показателя. Это значение определяется подстановкой в уравнение выбранной кривой роста величины времени t, соответствующей периоду упреждения: t = n + 1; t = n + 2 и т.д. Такой прогноз называется точечным, так как на графике его можно изобразить в виде точки.

Очевидно, что точное совпадение фактических данных в будущем и прогностических точечных оценок маловероятно. Поэтому точечный прогноз должен сопровождаться двусторонними границами, т.е. указанием интервала значений, в котором с достаточной долей уверенности можно ожидать появления прогнозируемой величины. Установление такого интервала называется интервальным прогнозом.

Интервальный прогноз на базе трендовых моделей осуществляется путем расчета доверительного интервала – такого интервала, в котором с определенной вероятностью можно ожидать появления фактического значения прогнозируемого экономического показателя. Расчет доверительных интервалов при прогнозировании с использованием кривых роста опирается на выводы и формулы теории регрессий. Перенесение выводов теории регрессий на временные экономические ряды не совсем правомерно, так как динамические ряды, как выше уже отмечали, отличаются от статистических совокупностей. Поэтому к оцениванию доверительных интервалов для кривых роста следует подходить с известной долей осторожности.

Методы, разработанные для статистических совокупностей, позволяют определить доверительный интервал, зависящий от стандартной ошибки оценки прогнозируемого показателя, от времени упреждения прогноза, от количества уровней во временном ряду и от уровня значимости (ошибки) прогноза.

Стандартная (средняя квадратическая) ошибка оценки прогнозируемого показателя определяется по формуле

(5.17)

– фактическое значение уровня временного ряда для времени

– расчетная оценка соответствующего показателя по модели (например, по уравнению кривой роста);

п – количество уровней в исходном ряду;

k – число параметров модели.

В случае прямолинейного тренда для расчета доверительного интервала можно использовать аналогичную формулу для парной регрессии, таким образом, доверительный интервал прогноза в этом случае будет иметь вид

(5.18)

L – период упреждения;

– точечный прогноз по модели на (п + L )-й момент времени;

п – количество наблюдений во временном ряду;

– стандартная ошибка оценки прогнозируемого показателя, рассчитанная по ранее приведенной формуле для числа параметров модели, равного двум;

– табличное значение критерия Стьюдента для уровня значимости а и для числа степеней свободы, равного п-2.

Если выражение

обозначить через К , то формула для доверительного интервала примет вид

Значения величины К для оценки доверительных интервалов прогноза относительно линейного тренда табулированы. Фрагмент такой таблицы для уровня значимости а = 0,20 представлен для иллюстрации в табл. 5.4.

Таблица 5.4

Число уровней в ряду (n )

Период упреждения L

Иногда для расчета доверительных интервалов прогноза относительно линейного тренда применяют приведенную выше формулу в несколько преобразованном виде:

(5.20)

Здесь t – порядковый номер уровня ряда (t =1, 2, ..., п ); – время, для которого делается прогноз; – время, соответствующее середине периода наблюдений для исходного ряда, например ; суммирование ведется по всем наблюдениям.

Эту формулу можно упростить, если, как часто делается на практике, перенести начало отсчета времени на середину периода наблюдений ():

(5.21)

Формула для расчета доверительных интервалов прогноза относительно тренда, имеющего вид полинома второго или третьего порядка, выглядит следующим образом:

Аналогично вычисляются доверительные интервалы для экспоненциальной кривой роста, а также для кривых роста, имеющих асимптоту (модифицированная экспонента, кривая Гомперца, логистическая кривая), если значение асимптоты известно.

Таким образом, формулы расчета доверительного интервала для трендовых моделей разного класса различны, но каждая из них отражает динамический аспект прогнозирования, т.е. увеличение неопределенности прогнозируемого процесса с ростом периода упреждения проявляется в постоянном расширении доверительного интервала.

Несмотря на громоздкость некоторых формул, расчет точечных и интервальных прогнозов на основе трендовых моделей в форме кривых роста технически является достаточно простой процедурой. Однако не следует обольщаться технической простотой процедуры экстраполяции и пытаться заглянуть слишком далеко, это неизбежно приведет к грубым ошибкам. Оптимальная длина периода упреждения определяется отдельно для каждого экономического явления с учетом статистической колеблемости изучаемых данных на основе содержательного суждения о стабильности явления. Эта длина, как правило, не превышает для рядов годовых наблюдений одной трети объема данных, а для квартальных и месячных рядов – двух лет.

При выравнивании временных рядов с использованием кривых роста приходится решать вопрос о том, какой длины должен быть ряд, выбираемый для прогнозирования. Очевидно, что если период ряда экономической динамики слишком короткий, можно не обнаружить тенденцию его развития. С другой стороны, очень длительный временной ряд может охватывать периоды с различными трендами и его описание с помощью одной кривой роста не даст положительных результатов. Поэтому рекомендуется поступать следующим образом. Если нет никаких соображений качественного порядка, следует выбирать возможно больший промежуток времени.

Если развитие обнаруживает циклический характер, следует брать период от середины первого до середины последнего периода цикла. Если ряд охватывает периоды с разными трендами, лучше сократить ряд, отбросив наиболее ранние уровни, которые относятся к периоду с иной тенденцией развития.

При экстраполяционном прогнозировании экономической динамики с использованием трендовых моделей весьма важным является заключительный этап – верификация прогноза . Верификация любых дескриптивных моделей, к которым относятся трендовые модели, сводится к сопоставлению расчетных результатов по модели с соответствующими данными действительности – массовыми фактами и закономерностями экономического развития. Верификация прогнозной модели представляет собой совокупность критериев, способов и процедур, позволяющих на основе многостороннего анализа оценивать качество получаемого прогноза. Однако чаще всего на этапе верификации в большей степени осуществляется оценка метода прогнозирования, с помощью которого был получен результат, чем оценка качества самого результата. Это связано с тем, что до сих нор не найдено эффективного подхода к оценке качества прогноза до его реализации.

Даже в тех случаях, когда прогноз не оправдался, нельзя категорически утверждать, что он был бесполезен, поскольку пользователь, если он хотя бы частично контролирует ход событий и может воздействовать на экономический процесс, может использовать прогнозную информацию желаемым для себя образом. Так, получив прогноз событий, определяющих нежелательное направление перспективного развития, пользователь может принять меры, чтобы прогноз не оправдался; такой прогноз называется само- деструктивным. Если прогноз предсказал ход событий, устраивающий пользователя, то он может использовать свои возможности для увеличения вероятности правильного прогноза; подобный прогноз называется саморегулирующим. Таким образом, показателем ценности прогноза является не только его достоверность, но и полезность для пользователей.

О точности прогноза принято судить по величине ошибки прогноза – разности между фактическим значением исследуемого показателя и его прогнозным значением. Очевидно, что определить указанную разность можно лишь в двух случаях: либо если период упреждения уже окончился и известно фактическое значение прогнозируемого показателя (известна его реализация), либо если прогнозирование осуществлялось для некоторого момента времени в прошлом, для которого известны фактические данные. Во втором из названных случаев информация делится на две части. Часть, охватывающая более ранние данные, служит для оценивания параметров прогностической кривой роста, другая, более поздняя, рассматривается как реализация прогноза. Полученные таким образом ошибки прогноза в какой-то мере характеризуют точность применяемой методики прогнозирования.

Проверка точности одного прогноза недостаточна для оценки качества прогнозирования, так как она может быть результатом случайного совпадения. Наиболее простой мерой качества прогнозов при условии, что имеются данные об их реализации, является отношение числа случаев, когда фактическая реализация охватывалась интервальным прогнозом, к общему числу прогнозов. Данную меру качества прогнозов k можно вычислить по формуле

где р – число прогнозов, подтвержденных фактическими данными;

q – число прогнозов, не подтвержденных фактическими данными.

Однако в практической работе проблему качества прогнозов чаще приходится решать, когда период упреждения еще не закончился и фактическое значение прогнозируемого показателя неизвестно. В этом случае более точной считается модель, дающая более узкие доверительные интервалы прогноза. На практике не всегда удается сразу построить достаточно хорошую модель прогнозирования, поэтому описанные в данной главе этапы построения трендовых моделей экономической динамики выполняются неоднократно.

Рассмотрим пример расчета точечного и интервального прогноза на основе трендовых моделей, используя данные задачи, решаемой в предыдущем параграфе данной главы.

Пример 5.2. Пусть для временного ряда, представленного в табл. 5.3, требуется дать прогноз на два шага вперед (t = 10 и t = 11) на основе адекватной линейной модели

Решение. Точечные прогнозы получим, подставляя в уравнение модели значения t =10 и t =11:

При расчете доверительных интервалов прогноза учтем, что в процессе решения упомянутой задачи предыдущего параграфа было найдено значение средней квадратической ошибки оценки прогнозируемого показателя , а значения величины

К в формуле (5.19) для ряда из девяти уровней можно получить при уровне значимости α = 0,20 из табл. 5.4 путем линейной интерполяции приведенных значений для п = 7 и п = 10: для t = 10 (L = 1) К = 1,77; для t = 11 (L = 2 ) К = 1,88. Результаты расчета по формуле (5.19) представлены в табл. 5.5.

Таблица 5.5

Так как модель, на основе которой осуществлялся прогноз, признана адекватной, то с принятым уровнем значимости 0,20, другими словами, с доверительной вероятностью 0,80 (или 80%) можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадет в интервал, образованный нижней и верхней границами.