Влияние невесомости и перегрузок на живые организмы. Влияние невесомости на организм

Всякий раз, запинаясь и падая, мы проклинаем гравитацию самыми последними словами, но в состоянии невесомости человеку тоже приходится несладко. Последствия влияния невесомости на человека очень существенны.

Влияние на рост


Одна из интересных особенностей воздействия невесомости на организм человека - это увеличение роста. Из-за невесомости ослабевают мышцы, обеспечивающие плотное прилегание позвонков друг к другу, мышечный корсет постепенно атрофируется, позвоночный столб теряет свои естественные изгибы. Чтобы минимализировать эти эффекты, космонавты во время пребывания на космической станции одеты в специальные костюмы "Пингвин", которые тонизируют мышцы и специальными встроенными амортизаторами создают нагрузку на опорно-двигательный аппарат.
В среднем космонавты вырастают за время работы в космосе на 3-5 см. Это создает определенные сложности. Дело в том, что для возвращения космонавтов на Землю в посадочной капсуле устанавливает ложемент, который отливается для каждого космонавта индивидуально, с подгонкой до миллиметра. Несоответствие размеров ложемента росту космонавта может угрожать его безопасности. В интервью "Российской газете" Валерий Богомолов рассказывал о том, как в спешном порядке однажды пришлось убирать лишний рост бортинженеру МКС-30 Анатолию Иванишину. И это не единичный случай.

Старение


Влияет невесомость и на процессы старения организма. Исследование , опубликованное в журнале The FASEB в августе прошлого года показали, что ускоренное старение в условиях невесомости связано даже не с процессами, происходящими с опорно-двигательным аппаратом, а с эндотелиальными клетками, которые выстилают изнутри все сосуды человека.
В условиях невесомости они испытывают серьезный окислительный стресс, при котором воспалительные процессы ускоряются, ускоряется и процесс старения. Всё это прямым образом влияет на сердечно-сосудистую систему человека.

Главный редактор журнала The FASEB Геральд Вейсманн, человек эволюционировал в условиях гравитации, которая использовалась для регулирования биологических процессов. Без гравитации, как сказал Вайсманн, ткани теряются и быстро стареют.

Невесомость и кости


Невесомость губительным образом влияет на состояние костей человека, кости теряют кальций и постепенно разрушаются. За один месяц пребывания в невесомости костная масса у космонавтом может снизиться на 1-2 %. Это происходит из-за нарушения фосфорного обмена, а также из-за того, что организму нет необходимости поддерживать тело и он почти перестает вырабатывать костный материал. Этот синдром получил название космической остеопатии.

Необходимо сказать и о том, что избыток кальция в крови может негативно сказываться на почках. К счастью, при возвращении на Землю космонавты снова набирают костную массу, но долгое пребывание в невесомости может сказаться на здоровье человека самым фатальным образом. Так, за время трехлетнего путешествия на Марс, космонавт может потерять до 50% костной массы, вернуться на Землю и восстановиться он больше не сможет.

Круглое сердце

Коль идет речь об атрофии мышц в космосе, то необходимо сказать и о главной мышце организма - сердце. Тем более, что не так давно НАСА провело исследование, давшее очень интересные результаты. Оказалось, что сердце не только ослабевает и уменьшается в объемах, но и... округляется. Во время проведения исследования кардиологи НАСА изучали сердца 12 космонавтов, работавших на МКС. Анализ снимков показал, что в условиях невесомости сердце округляется на 9,4 %. Впрочем, при возвращении на Землю сердце в течение полугода возвращает свою обычную форму и возобновляет "земную" активность. Чтобы представить снижение активности работы сердца, достаточно сказать, что полуторомесячное лежание на кровати равнозначно недельной работе в условиях невесомости.

Не заплачешь


Как Вы уже поняли, жизнь в невесомости мало похожа на сказку, но если на Земле человек может дать себе психологическую разгрузку просто заплакав, то в состоянии невесомости это невозможно. Слезы не только не польются ручьем, они даже не покинут глаз. Шарики из слез останутся внутри и будут не только затруднять зрение, но и ухудшать его, вызывая жжение. Для того, чтобы удалять из глаз лишнюю влагу, космонавты используют специальные "совочки".

НЕВЕСОМОСТЬ - отсутствие веса, т. е. силы, с к-рой тело под влиянием тяготения давит на опору и испытывает со стороны этой опоры ответное противодавление; вызывает ряд изменений в биологических объектах. Теоретически Н. может возникать при отсутствии тяготения или при отсутствии опоры. Первое условие характерно для точки пространства, где силы тяготения либо отсутствуют, либо взаимно уравновешиваются (так наз. статическая невесомость). Отсутствие опоры (второе условие) означает отсутствие внешних сил, прилагаемых к поверхности тела и способных вызвать его деформацию. При соблюдении этого условия тело свободно движется (падает) под действием гравитационных или инерционных сил и становится невесомым (динамическая невесомость). Динамическая Н. может возникать не только в условиях свободного падения, но и при движениях по более сложным траекториям, обусловленных взаимодействием гравитационных и инерционных сил. Подброшенное какой-либо силой тело невесомо на тех отрезках траектории своего полета, где оно не испытывает влияния внешних сил и движется под воздействием сил инерции или тяготения. Космический корабль вместе с расположенными в нем предметами, приобретя необходимую скорость, при определенных соотношениях между силами инерции и тяготения становится либо спутником планеты, либо удаляется от нее в космическое пространство, пребывая в обоих случаях в состоянии полной Н. Приложение внешних сил, напр, включение двигательной установки, прерывает Н., воспроизводит местные напряжения и деформации в конструкциях корабля, приводит к перемещению подвижных предметов до положения, при к-ром они обретают опору. Возникающие при контакте с опорой силы могут быть меньше или больше веса данного предмета в наземных условиях, что зависит от величины ускорения, сообщаемого космическому кораблю работающим двигателем. В зависимости от величины сил, действующих на тело в процессе движения с ускорением, пользуются понятиями «невесомость», «пониженная весомость», «сила земной гравитации», «повышенная весомость» (перегрузка К С точки зрения механики, вес, невесомость, перегрузка - это частные явления одного и того же порядка, различающиеся наличием или отсутствием внешних сил, прилагаемых к поверхности тела. В связи с этим физические и биол, проявления Н. целесообразно рассматривать в сопоставлении с проявлениями весомости. Физические свойства тел в статике и динамике, а также протекание ряда физ.-хим. процессов существенно зависят от наличия или отсутствия веса. Для Н. характерно: отсутствие напряжений и деформаций, к-рые в наземных условиях вызываются силами взаимодействия с опорой; изменение поведения жидкостей (оно определяется преимущественно силами поверхностного натяжения и сцепления); отсутствие распределения взвешенных частиц по плотности; снижение роли тепловой конвекции в механизмах теплообмена; невозможность протекания разнообразных физических и физ.-хим. процессов, осуществляемых в наземных условиях с участием веса (колебания маятника, горение и др.).

Для биол, объектов Н. представляет собой в первую очередь необычную среду обитания, хотя в повседневной жизни человек встречается с частичной Н. при качании на качелях, при прыжках, беге, спуске на лифте и т. д. Структура, функция, форма и поведение всех представителей животного и растительного мира, населяющих нашу планету, обусловлены, в частности, длительным приспособлением к весу, или гравитации. Поэтому Н. не может быть безразличной для живых организмов и должна вызывать у них возникновение ряда функциональных и структурных перестроек.

Попытки оценить влияние Н. на биол, объекты предпринимались еще К. Э. Циолковским. Успехи в развитии космической техники и наметившиеся реальные возможности осуществления полетов человека в космическое пространство привели к необходимости проведения экспериментальных исследований по проблеме Н. Моделирование нек-рых явлений, характерных для Н., достигалось погружением тела в жидкость с плотностью, равной плотности тела, или длительным пребыванием человека на постельном режиме (см. Гиподинамия , Гипокинезия). Вертикальные запуски баллистических ракет позволили на достаточно продолжительное (до 10 мин.) время воспроизводить реальное состояние Н., что дало возможность впервые провести исследование ее влияния на живые организмы (культуры тканей, растения, млекопитающие). Большой практический интерес представляет также метод воспроизведения состояния Н. с помощью самолетов - при полете по параболической кривой. Продолжительность невесомости в этом случае обычно составляет 20- 30 сек. Воздействие длительной Н. изучалось при полетах биоспутников и пилотируемых космических кораблей.

Анализ проведенных экспериментов с водной иммерсией и гиподинамией, а также результатов медико-биологических исследований в космических полетах позволил с достаточной достоверностью выделить ряд характерных изменений в организме человека, обусловливаемых воздействием Н. Различают первичные и опосредованные реакции биол, объектов на невесомость. К первичным реакциям относятся снятие весовой нагрузки на опорные структуры, отсутствие гидростатического давления крови и других биол, жидкостей, изменения в деятельности афферентных систем, гл. обр. специфических гравирецепторов. Каждая из таких первичных реакций в свою очередь служит пусковым механизмом в цепи вторично обусловленных сдвигов - опосредованных реакций. Отсутствие веса тела предрасполагает к развитию общей детренированно-сти и к связанному с этим снижению физической работоспособности и устойчивости по отношению к рабочим нагрузкам; развиваются деструктивные изменения со стороны костномышечной системы (деминерализация костной ткани, уменьшение мышечной массы, отрицательный азотистый баланс). Н. способствует снижению газо энергообмен а, уменьшает требования к системе транспорта кислорода, меняет условия функционирования сердечно-сосудистой системы, вызывая ее детренированность. Лишенная веса кровь переполняет органы верхней половины тела, что создает ощущение тяжести в голове и вызывает отечность тканей лица. Ответная защитная реакция организма в этом случае состоит в уменьшении объема циркулирующей крови за счет возрастания водопотерь и уменьшения водопотребления. Это в свою очередь ухудшает переносимость человеком вертикальной позы при возвращении на Землю. Потеря мышечной массы, а также воды и ряда минеральных веществ служит причиной уменьшения веса (точнее массы) тела. Невесомость в сочетании с другими факторами полета вызывает астенизации), изменение реактивности и иммунитета, снижение устойчивости по отношению к стрессовым воздействиям, появление неврол, расстройств, изменений гормональных функций, а также морфол, и физ.-хим. показателей крови и органов кроветворения. Изменения в деятельности афферентных систем приводят к возникновению иллюзий пространственного положения тела, к вестибулярным расстройствам (см. Вестибулярный симптомокомплекс) и сопровождаются перестройкой двигательных навыков.

Т. о., физиол, последствия пребывания человека в условиях Н. чрезвычайно обширны, а многие признаки адаптационных изменений в различных системах организма проявляются совершенно отчетливо. Н. является причиной таких изменений саморегуляции целостного организма, к-рые приводят к установлению новых взаимоотношений с окружающей средой. Адаптация к Н. выражается в форме постепенно (обычно в течение 3 - 7 сут.) угасающих дискомфортных ощущений и в существенно более длительном процессе функциональных и структурных перестроек, протекающих по типу «неупотребления» или «атрофии от бездействия». При этом, хотя состояние адаптированного организма адекватно условиям Н., оно одновременно характеризуется еще и потенциальной недостаточностью по отношению к гравитационным и другим (стрессовым в данных условиях) воздействиям.

После возвращения на Землю эта недостаточность проявляется в ощущении излишней тяжести тела, в затруднениях по поддержанию вертикальной позы, в нарушениях координации движений, в т. ч. при ходьбе, в быстрой утомляемости. Адаптационные перестройки развиваются во времени и, судя по опыту, накопленному в длительных космических полетах (продолжительностью до полу-года), являются обратимыми, хотя теоретически нельзя исключить возникновения более глубоких изменений, могущих возникнуть при длительном пребывании живых организмов в невесомости, в т. ч. со сменой поколений. Поэтому необходимо дальнейшее проведение исследований по разработке мед. прогнозов и определению допустимых с точки зрения сохранения здоровья и работоспособности космонавтов сроков пребывания в условиях Н. Большое значение имеет также установление взаимосвязи между характером и степенью функц, перестройки организма в Н. и выраженностью реадаптационных сдвигов после возвращения на Землю.

Борьба с отрицательными последствиями длительного пребывания человека в состоянии Н. основана на совр, представлениях о патогенезе нарушений, возникающих при этом в организме. Для предупреждения сдвигов, обусловленных преимущественно неблагоприятным влиянием на организм состояния гиподинамии, экипажи космических кораблей используют различные методы и средства физической тренировки.Особенно оправдал себя в этом отношении комплексный тренажер для физических упражнений, обеспечивающий статическую нагрузку в направлении продольной оси тела, динамические нагрузки (ходьба, бег, приседания), а также инерционно-ударные воздействия (прыжки). Дополнительным средством тренировки служит постоянное ношение * космонавтами специальных костюмов, конструкция к-рых способствует распределению нагрузки на различные мышечные группы. Для профилактики гиподинамического синдрома используют и другие тренажеры (велоэргометр, эспандеры), а также методы аутогенной тренировки (см. Психотерапия) и электростимуляции (см.). Для имитации гидростатического давления крови в условиях Н. применяется специальное устройства (вакуумная емкость), обеспечивающее декомпрессию нижней части тела. Создаваемое при этом отрицательное давление притягивает кровь к нижней половине тела, как это имеет место на Земле. Методика воздействия отрицательного давления на нижнюю половину тела может периодически применяться как функц, проба (см. Ортостатические пробы) и как тренирующее средство гл. обр. на заключительном этапе космического полета.

Из других средств профилактики отрицательного действия Н. следует отметить использование фармакологических и гормональных препаратов, оказывающих общетонизирующий стимулирующий эффект и нормализующих водно-солевой и белковый обмен организма. Немаловажное значение имеет рационально построенный режим труда, отдыха и питания космонавтов в полете, соблюдение требований личной гигиены, а также другие мероприятия, направленные на повышение неспецифической сопротивляемости организма. Важно объединение различных профилактических воздействий в единый защитный комплекс, к-рый позволит получить наибольший профилактический эффект. К этому следует добавить систему врачебного контроля за состоянием космонавтов в полете и возможность досрочного прекращения полета по мед. показаниям.

Изменения в организме человека после длительного пребывания в условиях Н. требуют проведения специальных мероприятий и при возвращении на Землю. В первые часы и сутки пребывания на Земле космонавты обычно надевают специальный противоперегрузочный костюм, препятствующий оттоку крови в нижнюю половину тела. Восстановительные мероприятия в послеполетный период включают постепенное увеличение нагрузок, применение общеукрепляющих и тонизирующих средств, регламентацию режима труда, отдыха и питания.

Библиография: Коваленко Е. Л. Основные методы моделирования биологических эффектов невесомости, Косм, биол, и авиакосм, мед., т. И, № 4, с. 3, 1977; JI а вник ов А. А. Основы авиационной и космической медицины, М., 1975; Невесомость (медико-биологические исследования), под ред. В. В. Парина и др., М., 1974; Основы космической биологии и медицины, под ред. О. Г. Газенко и М. Кальвина, т. 2, кн. 1, с. 324, М., 1975; Пестов И. Д. Экспериментальные подходы к исследованию регуляции внутренней среды организма в состоянии невесомости, Труды Третьих чтений, посвящен. разработке науч. наследия К. Э. Циолковского, с. 48, М., 1969, библиогр.; Савин Б. М. Гипервесомость и функции центральной нервной системы, JI., 1970, библиогр.; Человек в космосе, под ред. О. Г. Газенко и X. Бюрстедта, с. 76, М., 1974.

Наиболее распространенным фактором среды является естественная гравитация , действие которой проявляется во всех звеньях вселенной (от атомов до галактик), но в большей мере в мега- и макромире по следующей причине. Силы гравитации по сравнению с внутриядерными, внутриатомными и даже внутримолекулярными силами ничтожны (так, гравитационное притяжение между двумя протонами относится к электростатическим силам взаимного отталкивания как 1:10 36), в связи с чем влияние гравитационных сил на биологические объекты должно проявляться лишь на уровне структур, имеющих размеры от микронов и выше. Более мелкие же структуры (например, некоторые бактериофаги) из-за своих слишком малых размеров выходят из-под непосредственного влияния гравитационных сил и живут лишь в поле действия молекулярных электрических сил.

Величина гравитационного воздействия на живой организм напрямую зависит от его собственной массы (с увеличением массы гравитационное воздействие Земли возрастает). Вместе с тем гравитационное поле Земли является одной из немногих констант окружающей среды: с момента зарождения жизни на Земле на протяжении многих миллионов лет изменялись почти все параметры среды – температура, влажность, газовый состав атмосферы, атмосферное давление, спектр достигающих Земли электромагнитных колебаний, за исключением гравитационного воздействия Земли, зависящего от ее массы и размеров. При этом только благодаря стабильному гравитационному полю Земли, атмосфера и водные бассейны удерживаются на ней и не рассеиваются в космическое пространство, во многом предопределяя климатические условия планеты.

Гравитационное воздействие Земли (которое является частью механических условий окружающей среды ) оказывает существенное влияние на процессы развития живых организмов, индуцируя формирование антигравитационных механизмов, уравновешивающих организмы с окружающей средой. Механические условия окружающей среды , действующие на живой организм, складываются из следующих видов сил:

ü гравитационных (земного притяжения, интенсивность которого зависит от собственного веса организма), действуют одновременно на все структуры тела.

ü внутренних (внутримолекулярных и внутриатомных сил)

ü внешних (механических сил, возникающих в теле при сокращении скелетной и гладкой мускулатуры), их действие носит локальный характер, возникает в месте сокращения мышечной ткани и может проявляться в локальной деформации (изменении механического напряжения структур в ограниченных участках тела), либо изменении взаимного расположения одних частей тела относительно других , либо в сообщении телу ускорения , обуславливающему изменение кинетики движения. Действие внешних сил независимо от конечного эффекта приводит к возникновению в теле деформаций, которые могут быть преходящими (упругими, или обратимыми, в случае, если исчезают после прекращения внешней силы) или необратимыми (не исчезающими после применения внешней силы и приводящими к возникновению в теле различного рода травм).

Действие гравитационных сил на организм ощущается в случае затруднения его движения в гравитационном поле (при наличии опоры, силы трения) и проявляется возникновением субъективного ощущения собственного веса. Так, при контакте человека с опорой возникает внешняя сила, действующая на организм в виде реакции опоры, которая распространяется лишь на структуры организма, имеющие непосредственный контакт с опорой; все же остальные структуры продолжают перемещаться в гравитационном поле до тех пор, пока внутри самого тела не возникнут противодействия в виде упругих сил (упругих деформаций, представляющих собой изменение взаимного расположения отдельных элементов тела без нарушения целостности структур), уравновешивающих их массу. Иными словами, действие гравитационных сил на человека, касающегося какой-то опоры (будь-то поверхность земли, пола, кровати), проявляется в его некотором сжатии (под действием земного притяжения), но при этом и развитии в тканях собственного упругого сопротивления (упругих деформаций), препятствующего дальнейшему сжатию. В теле человека и животных деформации, противодействующие сжатию, вызванному земным притяжением, проявляются в виде сжатия и растяжения кожи, надкостницы, мышц, связок, костей, натяжения и смещения каркасных элементов (соединительнотканных оболочек и стромы) и паренхимы органов, перемещения жидкостей в межклеточном пространстве (межклеточных щелях, сосудах, полостях тела и органов), растяжения стенок сосудов в связи с перемещением масс крови и лимфы. В связи с существенными различиями механических свойств разных тканей, а также особенностями анатомического строения тела (предопределяющими механические связи между различными его структурами) возникающие в теле человека деформации являются неоднородными и могут проявляться в виде сжатия, растяжения, сдвига или кручения. При этом в связи с тем, что различные слои тела должны уравновешивать различные массы тела, величина упругих сил в разных слоях тела оказывается неодинаковой (деформации тем сильнее, чем больше величина действующих сил и чем слабее механические связи между структурами тела), и это обуславливает возникновение в теле сложного поля эластических сил, во многом предопределяющего субъективное восприятие веса собственного тела. Наибольшие напряжения возникают в опорно-связочном аппарате , в связи с тем, что, во-первых, через него передается действие внешних сил на организм, а, во-вторых, на него приходится основная нагрузка по уравновешиванию весомой массы органов и тканей тела. Возникновение поля эластических сил в теле человека под действием гравитационного притяжения Земли служит причиной раздражения различных механорецепторов, одни из которых реагируют только на начало процесса упругой деформации тканей, тогда как другие сохраняют свою активность на протяжении всего периода существования поля эластических сил, обуславливая постоянное ощущение человеком собственного веса.

Характер поля эластических сил и выраженность деформаций в теле под действием гравитации не являются постоянными и зависят от положения тела относительно вектора гравитационного поля, площади и области тела, через которую передается реакция опоры , а также от характера движений человека. Так, при вертикальном положении человека кости его нижних конечностей, таза и позвоночника испытывают деформацию сжатия, тогда как в костях верхних конечностей, закрепленных в плечевом поясе, напротив, возникают деформации растяжения. В случае, когда человек сидит , не касаясь опоры ногами , местом приложения внешних сил опоры является поверхность бедер и ягодиц, в которых возникает сжатие, тогда как в голени, наоборот, рястяжение.

Ощущение собственного веса исчезает лишь тогда, когда на тело не действуют никакие внешние силы и соответственно существующие между его структурами механические связи не испытывают никаких напряжений (состояние невесомости ). Подобное состояние возникает в начальный период свободного падения (когда сопротивление воздуха еще столь незначительно, что не оказывает тормозящего действия на тело, и тело перемещается в направлении вектора гравитационного поля с ускорением в 1g) или в космосе, когда космонавты вместе с кораблем находятся в состоянии как бы непрерывного падения (т.н. динамическая невесомость). Таким образом, все случаи динамической невесомости связаны с прекращением действия на тело внешних сил опоры, в результате чего оно начинает перемещаться под действием гравитационного поля земли.

При погружении тела человека в воду поле эластических сил, обусловленное действием гравитации, ослабевает настолько, сколько весит вытесненная телом жидкость. Однако возникающее при этом субъективное ощущение потери веса связано не с прекращением действия внешних сил, обуславливающих эффект веса, а с тем, что выталкивающая сила воды, выступающая в роли внешней силы, действует на большую часть поверхности тела, а не на ограниченную область, как это имеет место когда человек стоит, сидит или лежит на мягкой кровати. Однако, подобно тому, как члены экипажа подводной лодки при погружении ее в воду не теряют своего веса, так и все органы и ткани тела при погружении человека в жидкость продолжают сохранять неизменным свой первоначальный вес, а, следовательно, и упругие напряжения, обусловленные их деформацией. Более того, в состоянии динамической невесомости наши внутренние органы также сохраняют свой вес, что имеет существенное значение в механизме нарушений координации движений тела.

В случае действия на организм человека внешних сил, вызванных ускорением, превышающим ускорение силы тяжести , выраженность деформаций и упругих напряжений, противодействующих этим силам, будет гораздо большей гравитационных деформаций, что может послужить причиной развития необратимых деформаций (травм). Таким образом, с точки зрения физических процессов, вес, перегрузка и динамическая невесомость имеют единую природу и исключительно количественные различия, определяемые величиной внешних сил, действующих на организм и соответственно степенью собственного упругого напряжения тканей. Все они отражают особенности механического состояния тела: выраженность деформаций и напряженность поля эластических сил в теле. Но при этом, если эффект веса возникает в результате механических напряжений в тканях, противодействующих гравитационным силам, то перегрузка – механических напряжений в тканях, противодействующих силам, превосходящим гравитационные. Для динамической невесомости же характерно такое состояние тела, при котором в нем отсутствуют какие-либо механические напряжения, обусловленные действием внешних сил.

Гравитационное поле Земли оказывает наиболее выраженное влияние на процессы эмбриогенеза живых существ, развитие опорно-двигательного аппарата и деятельность сердечно-сосудистой системы. В частности, еще К.Э. Циолковский выдвинул предположение, согласно которому между линейными размерами тела живых существ и величиной гравитационного поля Земли, зависящей от ее размеров, должна существовать обратная зависимость. С одной стороны, чем выше сила гравитационного притяжения, тем меньше будут размеры тела животных, что было экспериментально доказано при культивировании некоторых животных в условиях гипергравитации. С другой стороны, действие гравитационного поля должно проявляться тем сильнее, чем больше масса организмов, в связи с увеличением напряженности поля эластических сил у крупных животных. Дело в том, что с увеличением размеров тела его масса растет пропорционально кубу линейных размеров, тогда как прочность структур тела – пропорционально квадрату линейных размеров. Таким образом, механические свойства тканей уже сами по себе предопределяют конечные размеры биосистемы. Если учесть, что масса наименьшего организма (вируса) отличается от массы наиболее крупного организма (кита) на 23 порядка, то, очевидно, что и влияние сил гравитации на эти организмы должно быть различным. Именно этим, по-видимому, объясняется то, что бактерии могут переносить ускорения даже в 50 000 g, тогда как кит, будучи выброшенным волной на берег, погибает под действием собственной тяжести. Несмотря на то, что размеры организмов определяются многими факторами, тем не менее хорошо известно, что животные-гиганты обитают только в водной среде, где выталкивающая сила воды способствует снятию большей части нагрузки с опорно-двигательного аппарата. Масса даже самых крупных наземных животных – бегемотов и слонов – в десятки раз меньше массы некоторых водных животных. В условиях искусственно создаваемой гравитации, величина которой в несколько раз превышает величину естественной, масса и размеры тела мышей, крыс, хомяков, цыплят даже в процессе онтогенеза оказываются значительно меньшими, чем у животных, выращенных в нормальных условиях. Длительная гипервесомость оказывает заметное влияние на строение костно-опорного аппарата, развитие антигравитационной мускулатуры, массу и размеры большинства органов (за исключением селезенки). Переход из водной в наземную среду обитания по существу представлял собой переход в гипергравитационную среду и был сопряжен с необходимостью не только уравновешивания массы тела, но и постоянного преодоления действия гравитационных сил при локомоциях. Все это в процессе эволюции привело к значительному увеличению массы скелета, появлению хорды, заменившейся в дальнейшем в процессе эволюции позвоночным столбом, и развитию мощной антигравитационной мускулатуры. Данные эволюционной морфологии свидетельствуют о том, что относительная масса скелета у наземных животных и птиц, для которых естественной средой обитания является суша, больше таковой водных животных. Причем у наземных животных и птиц почти 50% от общей массы скелета приходится на те его отделы, которые имеют непосредственное отношение к уравновешиванию силы тяжести. Более того, направление костных трабекул в губчатом веществе большинства костей полностью совпадает с направлением действия упругих сил, вызванных гравитационным полем (расположение трабекул таково, что они всегда "работают" только на сжатие, но не на изгиб или скручивание). Установлено, что расположение даже целых групп костей подчиняется этой же закономерности. Расположение трабекул в костной ткани не является генетически обусловленным, при изменении поля упругих сил происходит перестройка трабекулярной системы (так, при оперативном удалении большеберцовой кости у щенка происходит компенсаторное действию гравитационных сил 5-6-кратное усиление роста соседней малоберцовой кости; в случае неправильно сросшихся переломов также перестраивается трабекулярная система соседних участков кости). Высокие нагрузки всегда ведут к компенсаторному росту костей (закон Вольфа). Рядом исследователей показано, что длительная гипервесомость животных сопровождается утолщением костей, разрастанием соединительной ткани, увеличением содержания коллагена в связочном аппарате (иными словами, резкое усиление напряженности поля эластических сил обуславливает изменения не только функционального, но и морфологического характера). Действие динамической невесомости, напротив, приводит к потере кальция и фосфора костной тканью, уменьшению ее прочности. Проявлением данной закономерности является некоторая редукция скелета у вторично водных млекопитающих (тюленей, дельфинов, китов), у которых выталкивающее действие воды частично компенсирует гравитационное притяжение Земли. Между тем перемещение в воде сопряжено с преодолением значительно большего сопротивления среды и требует соответственно большего развития локомоторной мускулатуры.

Вместе с тем на формирование скелета повлияли не только гравитационные силы, но и характер передвижения животных в среде обитания, предопределяющий сопротивление движению. Если первые обитатели суши использовали преимущественно ундулирующий способ передвижения, то в дальнейшем в качестве основного получил развитие рычажный способ с помощью ходных конечностей. Несмотря на то, что передвижение с помощью конечностей привело к значительному сокращению трения с почвой, благодаря чему при той же мощности локомоторного аппарата затраты энергии, связанные с передвижением тела, значительно уменьшились, тем не менее такая форма локомоций потребовала, с одной стороны, возможности динамической фиксации подвижных сочленений, а, с другой – сохранения нормального положения тела в системе пространственных координат как в состоянии покоя, так и при движениях. Все это обусловило развитие специальных мышечных групп и формирование центров автоматического поддержания тонуса мускулатуры со сложной системой статических и статокинетических рефлексов. Отмеченные изменения достигли наибольшей выраженности у человека в связи с вертикальной позой. Влияние силы тяжести при вертикальном положении человека привело к более выраженному развитию ряда структур, обеспечивающих уравновешивание массы тела, а также тканей, выполняющих роль амортизационных устройств (межпозвоночные диски, мениски), появлению изогнутости позвоночного столба, сводчатости стопы, значительному развитию тазовых костей, обеспечивающих наряду с мышцами живота уравновешивание массы органов брюшной полости. Ортостаз человека обуславливает повышенную нагрузку не только на нижние конечности, но и на осевой скелет.

Таким образом, изменение кинетики роста, размеров тела, структурной организации костной ткани под влиянием гравитационных воздействий представляет собой лишь завершающий этап целой цепи процессов, начальным звеном которых являются изменения физиолого-биохимического характера. Пусковым механизмом этих реакций являются происходящие в различных структурах тела изменения напряженности поля эластических сил.

Наряду с костной системой, большой вклад в уравновешивание механических условий окружающей среды вносит скелетная мускулатура, фило- и онтогенетическое развитие которой во многом предопределяется действием гравитационных сил и характером передвижения животных. Выход животных на сушу обусловил резкое увеличение весовой нагрузки на костно-опорный аппарат, что вызвало компенсаторное усиление мышц-разгибателей и усложнение организации деятельности всей антигравитационной мускулатуры. Если у водоплавающих животных сохранение равновесия достигается сравнительно легко даже при неустойчивом равновесии, когда центр тяжести находится выше геометрического центра тела, то у наземных организмов достижение равновесия оказалось возможным лишь при условии постоянного перераспределения тонуса антигравитационной мускулатуры, обеспечивающей уравновешивание различных областей тела.

Развитие рычажного способа передвижения и удлинение конечностей привело к перемещению центра тяжести на значительное расстояние от поверхности земли, что потребовало не только обеспечение постоянного противодействия силе тяжести, но и сохранение равновесия тела как в состоянии покоя, так и при перемещениях отдельных его частей в связи с изменением позы и локомоциями. Передвижение с помощью конечностей связано с необходимостью постоянного преодоления поля гравитационных сил, так как при такой форме движения происходит постоянное перемещение массы тела относительно направления гравитационного поля. Все это в процессе эволюции привело к значительному развитию скелетной мускулатуры, на долю которой у большинства наземных организмов приходится до 40% от массы тела. Наибольшее развитие получила экстензорная мускулатура, формирование которой начинается раньше в процессе онтогенеза, а атрофия в старости происходит позже. Причем для создания постоянного антигравитационного усилия нужна экстензорная мускулатура с преобладанием медленных фазных единиц, способных к длительному тоническому напряжению.

Влияние естественной гравитации на сердечно-сосудистую систему человека осуществляется прямым и опосредованным путем. Прямое действие гравитационных сил связано с непосредственным их влиянием на массу крови (т.е. с появлением весомой массы крови под действием силы тяжести) и проявляется в возникновении гидростатического давления. Опосредованное действие гравитации на аппарат кровообращения состоит в том, что механические условия окружающей среды создают определенный запрос на развитие и функционирование антигравитационной мускулатуры, во многом определяющей уровень энергозатрат организма, а, следовательно, и интенсивность работы сердечно-сосудистой системы, от которой зависит доставка к периферическим тканям субстратов окисления и кислорода. Уровень доставки питательных веществ и кислорода, в свою очередь, определяет не только массу циркулирующей крови, но и в определенной мере степень развития всей сердечно-сосудистой системы, в том числе и размеры сердца. Наличие такой взаимосвязи подтверждается четкой взаимозависимостью, существующей у различных представителей позвоночных, между величиной сердца и весовыми особенностями тех отделов скелета, которые обеспечивают уравновешивание силы тяжести. Так, с увеличением роста животного организма увеличиваются и размеры сердца, масса циркулирующей крови и величина артериального давления. В частности, у жирафов при росте 3,5-4 метра давление в артериях дистальных отделов конечностей составляет 350-400 мм рт.ст. Такое высокое гидростатическое давление необходимо для обеспечения достаточного для нормального кровоснабжения давления в артериях головного мозга, поскольку из-за большой удаленности головного мозга от сердца (при расстоянии по вертикали от сердца до головного мозга в 1,2-1,4 метра), величина гидростатического давления на этом участке сосудистого русла падает на 90-100 мм рт.ст. Кроме гораздо более высокого, чем у других млекопитающих, артериального давления, для жирафов характерно наличие клапанов в артериях шеи, препятствующих обратному току крови в период диастолы, который возможен из-за значительного градиента давления в данной части сосудистого русла. Наконец, у этих млекопитающих имеет место более низкое расположение сердца, благоприятствующее венозному притоку к правому предсердию, а также исключительно жесткая кожа на конечностях, практически исключающая возможность растяжения венозных сосудов и депонирования в них крови. В строении сердечно-сосудситой системы тетрапод (ленивцев, летучих мышей и некоторых других), для которых нахождение головой вниз является вполне естественным, имеется также ряд существенных особенностей, предотвращающих развитие у них нарушений мозгового кровообращения при необычном направлении действия гидростатических сил.

Вертикальная поза человека и достаточно большие конечные размеры его тела обусловили значительные эволюционные перестройки в аппарате кровообращения. Так, в связи с тем, что крупные магистральные сосуды расположены вдоль вертикальной оси тела, наибольшей величины гидростатическое давление при вертикальной позе достигает в сосудах нижних конечностей, что обеспечивает увеличение и венозного давления, а, значит, само по себе облегчает венозный возврат от нижних конечностей к сердцу (из-за повышения градиента давления между венами нижних конечностей и венами, доставляющими кровь к сердцу). В то же время при одинаковой степени повышении давления в артериях и венах емкость вен в силу большей растяжимости их стенок возрастает в несколько раз больше, чем артерий, что может способствовать возникновению некоторого венозного застоя при длительном вертикальном положении тела. Между тем, препятствуют значительному венозному застою клапаны, имеющиеся в изобилии в венах нижних конечностей, а способствует венозному оттоку из нижних конечностей сдавливающее вены сокращение окружающих их скелетных мышц конечностей, имеющее место при ходьбе, беге, любых позных движениях. В случае же прекращения мышечной активности, в особенности, сочетающейся со снижением тонуса венозных сосудов, длительный ортостаз из-за скопления крови в нижних конечностях и нарушения ее притока к правой половине сердца может послужить причиной коллапса. Резкая перемена положения тела в пространстве с горизонтального на вертикальное приводит к первоначальному уменьшению венозного возврата по сосудам нижних конечностей и венам туловища, лежащим ниже уровня сердца, что сопровождается уменьшением кровенаполнения правой половины сердца, значительным уменьшением ударного объема сердца (до 45%) и минутного объема кровотока (на 20-40%, до 1-1,5 л/мин). Компенсаторно с целью нормализации кислородного снабжения тканей возрастает артерио-венозная разность по кислороду (почти на 70% по сравнению с исходным уровнем) и запускаются рефлекторные реакции в ответ на снижение активности прессорецепторов магистральных сосудов (вследствие снижения системного артериального давления) и повышения активности хеморецепторов магистральных сосудов (пониженным рО 2 и повышенным рСО 2). Отмеченные рефлекторные реакции проявляются в активации прессорного отдела сосудодвигательного центра и симпатических центров регуляции деятельности сердца, что приводит к возникновению тахикардии (способствующей нормализации минутного объема кровотока), повышению тонуса артериол, преходящим увеличением тонуса вен, а также интенсификацией присасывающего действия грудной клетки (вследствие усиления дыхания в ответ на повышение активности хеморецепторов сосудистого русла). При этом, если сердечный компонент компенсаторных реакций начинает проявляться почти одновременно с возникновением изменений гидростатических условий, то сосудистый – достигает своего максимума лишь через 10-20 с, тогда как основную роль в компенсации гемодинамических сдвигов в данный момент времени играет сокращение мышц нижних конечностей и живота, которое может обеспечить значительное повышение давление в сосудах брюшной полости и стремление к нормализации венозного возврата крови к сердцу. Сокращение же мышц нижних конечностей (преимущественно экстензорных, т.е. антигравитационных) возникает рефлекторно с целью поддержать ортостаз.

Если в начальный период ортостаза компенсация гемодинамических сдвигов обеспечивается преимущественно рефлекторным путем, то при длительном пребывании человека в вертикальном положении уравновешивание гидростатического давления достигается благодаря дополнительному подключению гуморальных механизмов, действие которых следует рассматривать как проявление адаптационных реакций организма, направленных на изменение емкости сосудистой системы и объема циркулирующей крови до уровня, соответствующего обменным процессам организма. Сущность этих гуморальных механизмов, принимающих участие в поддержании необходимого уровня артериального давления и объема циркулирующей крови, состоит в увеличении продукции антидиуретического гормона передним гипоталамусом, альдостерона клубочковой зоной коры надпочечников (секреция их возрастает в ответ на снижение артериального давления и соответственно активности прессорецепторов магистральных сосудов, способствуют уменьшению диуреза и увеличению объема циркулирующей крови) и активации ренин-ангиотензиновой системы (выброс ренина усиливается в ответ на понижение давления в приносящих артериолах почечных клубочков, оказывает влияние как на тонус артериол, так и на объем циркулирующей крови).

Cтраница 1


Состояние невесомости реализуется, например, is лифте, который свободно падает в поле тяготения Земли, или в космическом корабле, движущемся с неработающим двигателем в гравитационном поле. Такое состояние характерно для искусственных спутников и орбитальных космических станций. При невесомости действие на механическую систему гравитационного поля компенсируется силами инерции.  

Состояние невесомости возникает тогда, когда на тело действует только сила тяжести я поэтому оно движется с ускорением свободного падения. У человека в этом случае отсутствуют внутренние (мышечные) напряжения и поэтому он не чувствует свой вес.  

Состояние невесомости реализуется, например, в лифте, который свободно падает в поле тяготения Земли, или в космическом корабле, движущемся с неработающим двигателем в гравитационном поле. Такое состояние характерно для искусственных спутников и орбитальных космических станций. При невесомости действие на механическую систему гравитационного поля компенсируется силами инерции.  

Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения модуля скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением; поэтому в корабле наблюдается явление невесомости.  

Состояние невесомости достигается в свободном полете. И спутник на орбите, и свободно летящий камень, и подпрыгнувший человек находятся в состоянии невесомости. Груз, подвешенный на нити, в свободном полете невесом и, следовательно, не натягивает нить. Легко изготовить прибор, который дает возможность наблюдать состояние невесомости.  

Состояние невесомости наступает в баллистических ракетах) и космических кораблях после того, как прекратилась работа двигателей и ракета или космический корабль вышли из плотных слоев атмосферы. Вначале под действием силы тяги реактивных двигателей (см. § 124), направленной вверх, ракета или корабль движутся с большим ускорением а и набирают вертикальную скорость.  

Состояние невесомости может быть достигнуто различ-йыми способами, хотя оно (вольно или невольно) и ассоциируется с плаванием космонавтов в кабине космического корабля.  

Почему состояние невесомости на борту орбитальной станции свидетельствует о пропорциональности силы земного тяготения массе притягиваемых тел.  

Определим состояние невесомости следующим образом: тело Q находится в невесомости, если равнодействующая всех внутренних сил, приложенных к любому элементу, выделенному в теле, равна нулю.  


В состоянии невесомости и на путях к этому сб-стоянию общая картина поведения жидкости совершенно меняется из-за изменения соотношения между силами поверхностного натяжения и инерционными силами.  

При состоянии невесомости все точки тела имеют равные уско-рения.  

В состоянии невесомости тело, находящееся под действием сил веса, сохраняет внутри космического корабля состояние равновесия или покоя относительно системы координат, связанной с космическим кораблем. Ясно, что при этом частицы тела освобождаются от взаимодействий и совершают движение относительно приближенно инерциальной системы отсчета вместе с кораблем как свободные материальные точки.  

В состоянии невесомости ось ротора при условии (7.9.13) описывает в подшипниках линейчатую двухполосную коническую поверхность. При этом режиме возникают кромочные контакты цапф и подшипников, в результате чего происходит развальцовывание подшипников со стороны их наружных торцовых поверхностей.  

В состоянии невесомости приобретают существенное значение силы взаимодействия между телами, которые в обычных условиях играют второстепенную роль из-за их малости по сравнению с весом.  

Кандидат физико-математических наук Е. Лозовская

Гравитационное поле, неизменный природный фактор нашего существования, сыграло важнейшую роль в эволюции человека и наземных животных. Однако гравитационная физиология - наука о месте гравитационных сил и взаимодействий в структурно -функциональной организации живых систем - возникла не так давно, всего полвека назад. Чтобы понять, до какой степени живые организмы зависят от силы земного притяжения, потребовалось это притяжение преодолеть, то есть выйти в космос. Специалисты по гравитационной физиологии регулярно встречаются вместе, чтобы рассказать о своих исследованиях и обсудить проблемы. Очередной, 25-й Международный симпозиум по гравитационной физиологии состоялся в Москве в июне 2004 года. В нем принимали участие ученые из России, США, Франции, Германии, Японии и других стран. На симпозиуме побывала специальный корреспондент журнала "Наука и жизнь" кандидат физико-математических наук Е. ЛОЗОВСКАЯ.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Иммерсионная модель (погружение в воду через пленку или в гидрокостюме) позволяет имитировать многие эффекты невесомости.

Камбаловидная мышца, названная так из-за своей плоской формы, несет основную нагрузку по поддержанию тела в вертикальном положении.

Специальный башмак, который имитирует опорную нагрузку. Давление на стопу оказывает сжатый воздух, нагнетаемый компрессором в ритме ходьбы или бега.

Если кость не испытывает нормальной опорной нагрузки, толщина слоев губчатой костной ткани уменьшается.

Притяжение Земли настолько естественно, что мы его почти не замечаем. Да и как можно заметить силу, которая действует всегда и практически постоянна по величине? Тем не менее гравитация "учтена" практически во всех функциональных системах организма, на всех уровнях, от клеток до скелета. Но чтобы человек наконец-то обратил на гравитацию внимание, потребовался прыжок в космос, туда, где сила тяжести практически исчезает. Конечно, догадку о невесомости высказал еще Жюль Верн, а идею орбитальной станции предложил Циолковский, но все же только после первых запусков на орбиту животных и человека люди впервые по-настоящему осознали, насколько сильно функционирова ние живого организма зависит от величины гравитационных сил. Именно с началом космической эры возникла гравитационная биология как наука. У нас в стране такие исследования сосредоточились в Институте медико-биологических проблем РАН.

ЭВОЛЮЦИОННЫЙ ЭКСКУРС, ИЛИ ОБРЕТЕНИЕ ТОЧКИ ОПОРЫ

Жизнь, как известно, зародилась в океане, и первые позвоночные, заселившие толщу воды, находились в состоянии, которое можно назвать псевдоневесомостью. Более точное определение для этих условий - безопорность. И надо сказать, рыбы и другие морские позвоночные животные превосходно адаптированы к существованию в среде без опоры, у них достаточно хорошо развиты системы движения и ориентации в трехмерном пространстве. Гравитационные проблемы возникли с выходом животных на сушу. Надо было не только поддерживать положение тела в пространстве (ведь здесь уже нет выталкивающей архимедовой силы), но и передвигаться, добывать пропитание. Ползание на брюхе или прыжки не самый удобный способ передвижения, доступный к тому же только относительно мелким животным. (Кстати, крупнейшие позвоночные животные - киты - способны существовать только в океане благодаря архимедовой силе, компенсирующей силу тяжести.) На земле крупным животным пришлось приподнимать тело над землей, и с этого момента заработали все закономерности гравитационной физиологии.

Нужны были механизмы, противостоящие силе тяжести, поэтому эволюция и те силы, которые ею управляли, встроили гравитационный фактор почти в каждую систему. Начала формироваться не только усиленная костно-мышечная система с развитыми конечностями, удерживающая тело в пространстве над землей в покое и в движении, но и система обеспечения всех частей тела кислородом и питательными веществами - мощный сердечный насос, способный гнать кровь вверх. А когда предки человека встали на ноги, также потребовалась перестройка механизмов нервной системы, управляющих движением конечностей (об этом на симпозиуме рассказал молодой французский ученый Ж. Куртен).

УВИДЕТЬ В КОСМОСЕ, ИЗУЧАТЬ НА ЗЕМЛЕ

Хотя гравитационная физиология тесно связана с космическими исследованиями, наука эта вполне земная. Ее достижения уже нашли (и еще найдут!) применение в медицине для лечения заболеваний нервной системы и двигательного аппарата. Более того, основные эксперименты с участием человека сейчас проводят не в космосе, а на Земле. Космос позволяет выявить роль гравитации, но не позволяет корректно изучать ее. Физические упражнения, которые помогают космонавтам выжить на орбите, не дают возможности проводить "чистые" эксперименты. К тому же на Земле рядом с испытуемым всегда находится бригада врачей, готовых немедленно оказать помощь. На борту космической станции ситуация иная, там здоровьем и работоспособностью экипажа рисковать никак нельзя.

Строго говоря, космический корабль или спутник, находящийся на околоземной орбите, не обеспечивает состояние полной невесомости. Небольшая сила тяжести там все же есть, и такие условия называют микрогравитацией. Настоящую невесомость можно получить в аппарате, который летит с постоянной скоростью и не испытывает каких-либо гравитационных возмущений со стороны других небесных тел. А полет по орбите вокруг планеты - это, по сути, долгое-долгое падение, вплоть до самой посадки. Однако это отличие, важное с точки зрения физики, для физиологии значения не имеет, и микрогравитацию организм воспринимает как полное отсутствие тяготения.

На Земле состояние невесомости можно получить во время затяжного прыжка (до раскрытия парашюта) или во время полета самолета по параболической траектории снижения. Довольно много экспериментов с параболическими полетами проводят американские ученые, однако состояние невесомости при этом длится 40 секунд - ничтожно мало по сравнению даже с одним витком космического корабля вокруг Земли.

Гораздо более удобными оказались экспериментальные модели, которые имитируют некоторые эффекты уменьшенной гравитации. Одна из таких замечательных моделей, придуманная в нашей стране еще в 1973 году, - иммерсия, или сухое погружение. Бассейн с водой покрывают свободно расположенной водонепроницаемой пленкой, человек ложится на эту пленку, но с водой при этом не соприкасается, вода смыкается над человеком в пленке, и наружу торчит одна голова. Такая модель как раз и обеспечивает ту самую безопорность, которая существует в океане.

Изучение гравитационных воздействий не ограничивается микрогравитацией. Серьезные последствия, причем проявляющиеся сразу, оказывает гипергравитация, или перегрузка. Такие состояния возникают, например, при взлете и посадке самолетов и космических аппаратов, а моделируют их и изучают с помощью центрифуги.

МЫШЕЧНЫЙ ТОНУС ПОМОГАЕТ СОСУДАМ

Как организм узнает, что гравитационное поле такое, а не другое, что оно есть или что его нет, что изменилось его направление?

У животных и человека важнейшая гравитационно-чувствительная система - сердечно-сосудистая. Кровь под действием силы тяжести стремится опуститься вниз, но в организме выработались определенные системы противодействия этому фактору. В том числе барорецепторная система, регулирующая давление крови в верхней части тела, в каротидных артериях, которые снабжают мозг, что жизненно важно. Барорецепторы - это клетки, нервные окончания которых реагируют на давление крови. Например, если давление снижается, они включают систему поддержания давления. Но если падение давления происходит слишком резко и барорецепторы не успевают срабатывать, наступает потеря сознания. Эта ситуация хорошо знакома многим, если не всем людям. Человек просыпается утром, встает - кружится голова. У больного, который постоянно лежит в постели и адаптировался к горизонтальному положению, развивается гравитационная, или ортостатическая, недостаточность: любая попытка принять вертикальное положение ("ортостаз" в переводе с латинского означает "прямо стою") вызывает большие трудности.

Чтобы бороться с такой ситуацией, нужно понять, как организовано поддержание ортостатической функции. В последние годы стало ясно, что помимо барорецепторов существует еще один важнейший механизм регуляции давления крови - так называемый мышечный насос. Раньше ему не придавали большого значения, поскольку вены, по которым кровь поднимается от нижней части тела к сердцу, не имеют такого гладкомышечного слоя, как артерии, то есть почти не обладают собственным насосным действием. Так как же происходит проталкивание крови? Член-корреспондент РАН Инеса Бенедиктов на Козловская выдвинула гипотезу о роли мышечного тонуса в функционировании сосудистой системы. В обычных условиях у человека постоянно напряжены мышцы конечностей, брюшного пресса. Задача удерживать тело и передвигаться требует от них постоянного тонуса. Этот мышечный тонус и позволяет проталкивать кровь чисто механически. Если тонус снижен, проталкивание крови резко ухудшается.

Совсем недавно в совместных российско-французских исследованиях на борту Международной космической станции и в экспериментах с иммерсией было показано, что в невесомости (или при ее моделировании) увеличивается податливость, мягкость вен. На симпозиуме об этих данных сообщили кандидат медицинских наук Г. Фомина и профессор О. Л. Виноградова.

МЫ ЧУВСТВУЕМ ГРАВИТАЦИЮ… ПОДОШВАМИ

Итак, гравитационные изменения в работе сердечно-сосудистой системы связаны с тонусом мышц, но от чего зависит этот мышечный тонус? Самая гравитационно-чувствительная мышца человека - камбаловидная. Находится она на задней поверхности голени в глубине, сразу над ахилловым сухожилием, и закрыта двумя головками икроножной мышцы. Камбаловидная мышца одна "тянет" 70 кг веса человека, а когда он бегает и прыгает - еще больше. Американцы подсчитали, что на эту мышцу при динамических нагрузках приходится до 10 весов тела, конечно, однократно, в момент толчка.

В невесомости или в экспериментах, ее моделирующих, тонус камбаловидной мышцы резко падает. Как мышца узнает о том, что уровень гравитации стал другим? Конечно, поступают какие-то сигналы от нервной системы, но и в самой мышечной ткани, по-видимому, есть клеточные и молекулярные датчики. Сейчас их изучение только началось, появились представления о механочувствительных каналах в мембране клеток, но эта область пока еще остается белым пятном в науке.

Зато удалось выявить существование совершенно нового органа чувств. В учебниках этого еще нет, но гравитационные физиологи уже признали существование новой сенсорной системы, реагирующей на изменение гравитации, - системы восприятия опоры. Роль новых органов чувств выполняют подошвы ног, а точнее, расположенные в них рецепторы глубокой кожной чувствительно сти - так называемые тельца Фатера-Пачини. Они открыты еще в XIX веке, но их роль в гравирецепции установлена совсем недавно. Конечно, мы воспринимаем подошвами не вес тела, а силу реакции опоры, равную весу по величине и противоположную по направлению, но физиологической сущности это не меняет.

Как именно работают тельца Фатера-Пачини, пока не ясно. Ученые полагают, что механическое воздействие силы реакции опоры передается через нервную систему и влияет на состояние определенных клеток спинного мозга - мотонейронов. В результате в зависимости от силы реакции опоры включаются или выключаются системы, управляющие работой тех мышц, которые поддерживают позу, - это так называемая позно-тоническая система. Другая мышечная система - локомоторная - обеспечивает быстрые и резкие движения в пространстве. Кстати, наличие двух мышечных систем - открытие гравитационной физиологии, связанное с именем И. Б. Козловской. Именно тоническая система противостоит силе тяжести.

Любимая экспериментальная модель для изучения мышечного тонуса - иммерсия, о которой речь шла выше. Эта модель действительно обеспечивает безопорность. По законам гидростатики давление со всех сторон одинаково, а потому организм давления не чувствует. Однако если искусственно имитировать опору, то мышечный тонус можно поддерживать на должном уровне и в условиях иммерсии. Для этого в Институте медико-биологических проблем изобрели уникальный тренажер, который представляет собой башмак с пневматическим приводом. Воздух, сжимаясь, оказывает периодическое давление на стопу, имитируя ходьбу. С такими тренировками мышечный тонус у испытуемых после семидневного погружения в воду оставался в норме.

Ученые пытаются понять, как происходит регуляция мышечной активности на уровне клетки. Как система белкового синтеза мышечных волокон узнает, что ей надо прекращать работу? Как система распада белка получает сигнал - атакуй, повышай активность? Ясно, что существует система, которая "чувствует", работает мышца или нет. Один из возможных механизмов связан с ионами кальция. Недавно стало известно, что при разгрузке (и, конечно, в отсутствие мышечных сокращений) уровень кальция в мышечных волокнах повышен. Интересно, что если связать избыточный кальций, то можно избежать многих неблагоприятных эффектов невесомости. Об этих первых экспериментах со связыванием кальция на симпозиуме рассказал Б. С. Шенкман.

ГРАВИТАЦИЯ, СОЛЬ И ВОДА

То, что тело человека состоит на 70% из воды, давно известно, но вода эта, в соответствии с принятой в физиологии моделью, находится в разных секторах: внутриклеточная жидкость, внеклеточная жидкость (сюда относятся жидкости полостей - брюшной, грудной, церебральной) и сосудистая (кровь). Эволюция добилась того, чтобы не только состав, но и объем жидкости организма поддерживался постоянным, поскольку это дает человеку и крупным животным наибольшую свободу в приспособлении к различным условиям внешней среды.

Как обеспечивается такое постоянство состава и объема? У здорового человека работают механизмы как пассивной регуляции, на основе физико-химических законов, так и с помощью биологически активных веществ. Когда что-то разлаживается, возникают отеки или же несахарный диабет, при котором организм не способен задержать выпитую жидкость.

До того как человек полетел в космос, ученые не подозревали, что функция поддержания состава и объема жидкости зависит от гравитации. Но оказывается, что на снижение силы тяжести организм реагирует направленными усилиями по уменьшению объема внеклеточной жидкости. Объем внутрисосудистой жидкости тоже уменьшается. Если бы человеку предстояло всю оставшуюся жизнь провести на борту космической станции, то эту реакцию следовало бы назвать адаптивной: в невесомости с пониженным объемом жидкости легче жить и работать. Но при возвращении на Землю после продолжительных космических полетов (дольше нескольких суток) возникает состояние, при котором сердце не может нормально снабжать кровью мозг. И дело не только в понижении мышечного тонуса, но и в том, что у сердечно-сосудистой системы просто не хватает объема крови, чтобы заполнить все сосудистое русло.

Казалось бы, достаточно дать человеку выпить воды или раствора солей, но все не так просто. Системы регуляции водно-солевого обмена требуют времени для обратной перестройки, и поначалу жидкость в организме не задерживается. На симпозиуме прозвучал доклад Мартины Хеер из кельнского Центра авиакосмической физиологии. Она рассказала, что по данным, полученным в полетах немецких космонавтов, в условиях реальной невесомости в коже и соединительных тканях начинает откладываться натрий, но не в виде иона, а в связанной с белком форме. Подобный механизм "запасания" минеральных веществ существует у млекопитающих, которые впадают в спячку. Почему это происходит у космонавтов - пока не ясно.

КОСМИЧЕСКИЙ ОСТЕОПОРОЗ И КАК С НИМ БОРОТЬСЯ

Изучение костной системы - один из важнейших разделов гравитационной физиологии. Отсутствие нагрузок на кости в условиях микрогравитации приводит к понижению минеральной плотности кости, что очень похоже на остеопороз. Кости теряют кальций неравномерно. Сильнее всего он вымывается из участков кости, которые формируют суставы, то есть испытывают наибольшую нагрузку в земных условиях. В нижних конечностях процесс потери кальция выражен сильнее, чем в верхних, а в черепе кальций даже откладывается. Как показали исследования доктора медицинских наук В. С. Оганова, процесс восстановления нормальной минеральной плотности занимает в 2-3 раза больше времени, чем длится космический полет, и после продолжительных космических экспедиций растягивается на годы.

Предотвратить потерю кальция - насущная задача, поскольку космонавт, возвращаясь на Землю, испытывает перегрузки посадки. Если кость потеряла прочность, перегрузка может привести к компрессионному перелому позвонков или даже к перелому трубчатых костей.

Для изучения процессов в костной ткани в земных экспериментах используют модель с вывешиванием крыс за хвост. При этом крыса опирается о пол передними лапками, а вот задние как бы находятся в состоянии невесомости. В нормальных условиях кости скелета у крысы растут до самой старости, а при вывешивании их рост затормаживается. Замедляется и процесс ремоделирования - постоянного обновления костной ткани. В экспериментах, которые проводила И. М. Ларина, потерю кальция у крыс удалось предотвратить с помощью ибандроната - препарата, который замедляет рассасывание костной ткани. Возможно, в ближайшем будущем этот препарат войдет в состав космической бортовой аптечки.

КЛЕТКИ НЕ ИСКЛЮЧЕНИЕ

Первые исследования на клетках, которые проводили до полета человека в космос, давали противоречивые результаты. Исследовательская техника была несовершенна, модели не отработаны, случалось, что клетки гибли, и тогда скептики начинали утверждать - космос для человека закрыт. Но по мере усовершенствования экспериментального оборудования и моделей выяснилось, что на клеточном уровне все не так страшно. Клетки в космосе размножались, продуцировали обычные для них вещества. На некоторый период возобладало мнение, что невесомость на клетки вообще не действует, что клетка слишком маленькая, силу тяжести она не ощущает, и только на физиологическом уровне можно уловить какой-то эффект. И лишь исследования последних лет убедительно показали: микрогравитация все-таки влияет на клетки, но ее влияние неразрушительно, и одна из точек приложения - цитоскелет. Структурные элементы цитоскелета - актиновые нити, которые в норме равномерно заполняют объем клетки, сдвигаются к краям. При этом изменяется функционирование и рецепторов, и ионных каналов. Клетка как бы адаптирует свою жизнедеятельность под уменьшенную гравитацию.

Можно ли как-то использовать микрогравитацию в биотехнологических целях? Обсуждаются проекты выращивания клеток хряща или костной ткани, но для этого требуется оборудование, которое не так-то просто разместить в ограниченном пространстве космической станции.

Пока что на МКС проходят более простые, но не менее важные эксперименты с иммунными клетками, о которых рассказала на симпозиуме Л. Б. Буравкова. Объектами исследования стали так называемые естественные киллеры, составляющие 5-8% среди всей популяции лимфоцитов, которые распознают и уничтожают опухолевые клетки, а также клетки, пораженные вирусом, и клетки с отклонениями от нормы. Первые эксперименты показали, что микрогравитация не нарушает межклеточного взаимодействия, но активность киллеров может меняться. Сейчас ученые приступили к изучению влияния микрогравитации на стволовые клетки.

КОСМИЧЕСКИЕ МЕТОДЫ В ЛЕЧЕНИИ ЗЕМНЫХ БОЛЕЗНЕЙ

Одна из задач гравитационной физиологии - понять, как невесомость действует на здоровье космонавтов, и помочь в разработке профилактических мер. Однако многие полученные результаты могут быть востребованы и в практике земной медицины.

Весьма перспективная область исследования - поведение мышечных ферментов при миопатиях. Заболевания эти тяжелые, нередко приводящие к смертельному исходу в молодом возрасте. Например, при миодистрофии Дюшенна больные редко доживают до 20 лет, а в России с таким диагнозом рождаются 3 человека на 10 тысяч.

У здорового человека при интенсивной мышечной нагрузке в кровь из мышечных волокон выходит довольно значительное количество фермента креатинфосфокиназы. Почему это происходит, пока не совсем ясно, видимо, мембрана мышечных клеток под нагрузкой становится "дырявой". Аналогичное явление, но без больших физических нагрузок наблюдается у больных миопатией, при этом концентрация фермента в крови еще выше. А вот в космосе и в экспериментах с иммерсией поступление молекул этого фермента в кровь резко снижается. Эти результаты дают надежду, что с помощью иммерсии удастся снизить повреждающее воздействие факторов, которые приводят к миопатии. В лаборатории Б.С. Шенкмана пока проводят соответствующие исследования на животных.

Некоторые методы, разработанные в отделе сенсомоторной физиологии и профилактики, которым руководит И. Б. Козловская, уже активно внедряются в клинику. С помощью нагрузочных костюмов сейчас лечат детский церебральный паралич, инсульт, болезнь Паркинсона. На очереди применение искусственной опоры - того самого пневматического башмака, о котором уже говорилось. К его испытаниям приступают в нервной клинике Российского государственного медицинского университета.

Исследования в космической области помогают разработать новые способы фармакологического воздействия на водно-солевой обмен, лечения состояний, связанных с обезвоживанием.

КАК ДОЛЕТЕТЬ ДО МАРСА

Физиологическим проблемам полета на Марс был посвящен доклад директора Института медико-биологических проблем академика А. И. Григорьева. Успехи космонавтики последних десятилетий делают такой проект достаточно реальным. Накоплен опыт биомедицинской поддержки долговременных экспедиций на орбитальных станциях и полетов на Луну, где сила гравитации меньше земной примерно в 6 раз. А после Луны естественная ближайшая цель космических исследований - Марс. Благодаря непилотируемым полетам наши знания о Красной планете существенно возросли.

Какие основные трудности ждут человека во время такого полета? Минимальная расчетная продолжительность экспедиции - 500 суток, то есть полтора года, причем полет будет проходить в автономном режиме. Если на станцию, расположенную на околоземной орбите, всегда можно выслать корабль с дополнительным продовольствием и топливом, то в дальней экспедиции экипажу придется рассчитывать только на свои силы. Факторов, которые будут "подтачивать" эти силы, очень и очень много: стресс из-за вынужденного нахождения в ограниченном пространстве и искусственном окружении, космическая радиация, отсутствие привычного магнитного поля. Но прежде всего - изменение гравитационного поля. Во время пилотируемого полета на Марс человек столкнется с разными уровнями гравитации. Во-первых, это гипергравитация (перегрузка) во время взлета и посадки. Во-вторых, микрогравитация (невесомость) в течение длительного межпланетного перелета. В-третьих, гипогравитация на поверхности Марса, которая составляет 38% от земной силы тяжести.

Перегрузки тяжелы для организма: это огромное напряжение для мышц, костей, сосудов. Меняется и метаболизм: возрастает потребление кислорода, падает температура тела, нарушается суточный ритм. По счастью, такие нагрузки кратковременны, и подготовиться к ним можно, тренируясь на центрифугах.

Казалось бы, по сравнению с перегрузкой невесомость должна доставлять более приятные ощущения. Но, как уже говорилось выше, отсутствие силы тяжести чревато неприятными последствиями для самых разных систем организма: происходит перераспределение жидкости в организме, снижаются сократительная способность мышечных волокон и минеральная плотность костной ткани, усиливается риск переломов и образования камней в почках.

В космическом полете изменяется состояние вестибулярного аппарата и сенсорных систем. Происходит расстройство всех форм зрительных движений. Причем микрогравитация влияет как на скорость, так и на точность зрительной реакции. А ведь задача человека в длительном полете - не просто выдержать нагрузки, но и сохранить способность к сложной операторской деятельности. Долетев до Марса, надо будет посадить на поверхность планеты спускаемый модуль, а затем стартовать. А для успешной работы на Марсе необходима быстрая адаптация к марсианской гравитации после долгого пребывания в невесомости.

Как справиться с проблемой неблагоприятного влияния невесомости в условиях длительного полета? Первым делом приходит в голову мысль о создании искусственной гравитации. Идею искусственной гравитации, создаваемой с помощью вращения, впервые выдвинул еще Циолковский. Она была реализована на искусственном спутнике "Космос-936", в котором летали крысы. Однако результаты первых исследований показывают, что всех проблем искусственная гравитация не снимает. Сейчас осуществляется международный проект по изучению физиологического действия искусственной гравитации, в котором участвуют Россия, Германия и США.

Опыт орбитальных станций показывает, что более перспективно использование бортового комплекса тренажеров, который работает по принципу обратной связи и автоматически определяет нагрузку, необходимую космонавту.

В любом случае, если посылать человека на Марс, надо сделать все, чтобы он вернулся обратно, и вернулся здоровым.

РАЗМЫШЛЕНИЯ ПОСЛЕ СИМПОЗИУМА

Симпозиумы по гравитационной физиологии имеют свою историю. В середине 1970-х годов четыре выдающихся ученых: американцы Артур Смит и Нелло Пейс, швед Хилдинг Бьюрштедт и Олег Георгиевич Газенко, в то время директор Института медико-биологических проблем, - собрались вместе и учредили так называемую Гравитационную комиссию, а точнее, Комиссию по гравитационной физиологии Международного союза физиологических наук. С заседаний этой комиссии и начались регулярные встречи специалистов, изучающих влияние гравитации на живое, которые проходят в атмосфере неформального, дружеского общения.

"Мы все давно знаем друг друга, и каждая такая встреча - праздник, - говорит ответственный секретарь оргкомитета Б. С. Шенкман. - Такие симпозиумы нужны для того, чтобы учить молодежь, приучать наших молодых исследователей общаться и работать на международном уровне. В космической отрасли почти все эксперименты - международные. И, к сожалению, у нашей науки здесь те же проблемы, что и у страны в целом. Мы проводим хорошие, интересные эксперименты, а тонкими аналитическими технологиями (включая дорогостоящее оборудование), позволяющими исследовать клеточные и молекулярно-биологические механизмы, часто владеют только наши западные коллеги. Иначе говоря, нам крысу в космос запустить - запросто, а вот исследовать у нее гены - уже гораздо труднее. Тем не менее наша область науки выходит из прорыва. В лабораториях появляются новые приборы. Все больше молодых сотрудников возвращаются из-за границы после длительных стажировок вооруженные последними методическими достижениями. И позволю себе высказать крамольную мысль: может быть, нужно больше денег вкладывать в тонкие базисные эксперименты, новое экспериментальное оборудование. К сожалению, не все понимают, что проводить практические разработки без фундаментального научного обеспечения будет означать всего лишь возвращение к допотопному методу "проб и ошибок" (что в итоге обойдется обществу гораздо дороже). Не надо ждать от науки каждодневных сенсаций, не надо требовать от нее сиюминутных чудес. Как показывает исторический опыт, вложения в науку всегда окупаются, но не всегда - сразу".

Редакция благодарит доктора биологических наук Б. С. Шенкмана, доктора медицинских наук И. М. Ларину и доктора медицинских наук Л. Б. Буравкову за помощь в подготовке материала.