Межзвездная среда. Межзвездный газ

Газовые туманности. Самая известная газовая туманность - в созвездии Ориона (229), протяженностью свыше 6 пс, заметная в безлунную ночь даже невооруженным глазом. Не менее красивы туманности Омега, Лагуна и Трехраздельная в созвездии Стрельца, Северная Америка и Пеликан в Лебеде, туманности в Плеядах, вблизи звезды h Киля, Розетка в созвездии Единорога и многие другие. Всего насчитывают около 400 таких объектов. Естественно, что полное их число в Галактике значительно больше, но мы их не видим из-за сильного межзвездного поглощения света. В спектрах газовых туманностей имеются яркие эмиссионные линии, что доказывает газовую природу их свечения. У наиболее ярких туманностей прослеживается и слабый непрерывный спектр. Как правило, сильнее всех выделяются водородные линии Нa и Нb и знаменитые небулярные линии с длинами волн 5007 и 4950 Å, возникающие при запрещенных переходах дважды ионизованного кислорода О III. До того, как эти линии удалось отождествить, предполагалось, что их излучает гипотетический элемент небулий. Интенсивны также две близкие запрещенные линии однократно ионизованного кислорода О II с длинами волн около 3727 Å, линии азота и ряда других элементов. Внутри газовой туманности или непосредственно вблизи от нее почти всегда можно найти горячую звезду спектрального класса О или В0, являющуюся причиной свечения всей туманности. Эти горячие звезды обладают очень мощным ультрафиолетовым излучением, ионизующим и заставляющим светиться окружающий газ точно так же, как это имеет место в планетарных туманностях (см. § 152). Поглощенная атомом туманности энергия ультрафиолетового кванта звезды большей частью идет на ионизацию атома. Остаток энергии расходуется на придание скорости свободному электрону, т. е. в конечном счете превращается в тепло. В ионизованном газе должны также происходить и обратные процессы рекомбинации с возвращением электрона в связанное состояние. Однако чаще всего это реализуется через промежуточные энергетические уровни, так что в итоге вместо первоначально поглощенного жесткого ультрафиолетового кванта атомы туманности излучают несколько менее энергичных квантов видимых лучей (этот процесс называется флуоресценцией). Таким образом, в туманности происходит как бы «дробление» ультрафиолетовых квантов звезды и переработка их в излучение, соответствующее спектральным линиям видимого спектра. Излучение в линиях водорода, ионизованного кислорода и азота, приводящее к охлаждению газа, уравновешивает поступление тепла через ионизацию. В итоге температура туманности устанавливается на некотором определенном уровне порядка, что можно проверить по тепловому радиоизлучению газа. Количество квантов, излучаемых в какой-либо спектральной линии, в конечном счете пропорционально числу рекомбинаций, т. е. количеству столкновений электронов с ионами. В сильно ионизованном газе концентрация и тех и других одинакова, т. е. Поскольку согласно (7.18) частота столкновений одной частицы пропорциональна п, общее число столкновений всех ионов с электронами в единице объема пропорционально произведению nine, т. е. Следовательно, общее число квантов, излучаемых туманностью, или ее яркость на небе - пропорциональна, просуммированному вдоль луча зрения. Для однородной туманности протяженностью L, это дает. Произведение называется мерой эмиссии и является важнейшей характеристикой газовой туманности: ее значение легко получить из непосредственных наблюдений яркости туманности. Вместе с тем мера эмиссии связана с основным физическим параметром туманности - плотностью газа. Таким образом, измеряя меру эмиссии газовых туманностей, можно оценить концентрацию частиц пе, которая оказывается порядка 10 2−10 3 см −3 и даже больше для самых ярких из них. Как видно, концентрация частиц в газовых туманностях в миллионы раз меньше, чем в солнечной короне, и в миллиарды раз меньше, чем могут обеспечить лучшие современные вакуумные насосы. Необычайно сильная разреженность газа объясняет появление в его спектре запрещенных линий, сравнимых по своей интенсивности с разрешенными. В обычном газе возбужденные атомы не успевают излучить запрещенную линию потому, что гораздо раньше, чем это произойдет, они столкнутся с другими частицами (в первую очередь электронами) и отдадут им свою энергию возбуждения без излучения кванта. В газовых туманностях при температуре 104 ёK средняя тепловая скорость электронов достигает 500 км/сек и время между столкновениями, вычисленное по формуле (7.17) при концентрации ne = 102 см −3, оказывается 2×106 сек, т. е. немногим меньше месяца, что в миллионы раз превышает «время жизни» атома в возбужденном состоянии для большинства запрещенных переходов. Зоны H I и Н II. Как мы только что видели, горячие звезды на больших расстояниях вокруг себя ионизуют газ. Поскольку в основном это водород, ионизуют его главным образом лаймановские кванты с длиной волны короче 912 Å. Но в большом количестве их могут дать только звезды спектральных классов О и В0, у которых эффективные температуры Tэфф ³ 3×104 ёK и максимум излучения расположен в ультрафиолетовой части спектра. Расчеты показывают, что эти звезды способны ионизовать газ с концентрацией 1 атом в 1 см3 до расстояний нескольких десятков парсеков. Ионизованный газ прозрачен к ультрафиолетовому излучению, нейтральный, наоборот, жадно его поглощает. В результате окружающая горячую звезду область ионизации (в однородной среде это шар!) имеет очень резкую границу, дальше которой газ остается нейтральным. Таким образом, газ в межзвездной среде может быть либо полностью ионизован, либо нейтрален. Первые области называются зоны Н II, вторые - зоны H I. Горячих звезд сравнительно мало, а потому газовые туманности составляют ничтожную долю (около 5%) всей межзвездной среды. Нагрев областей Н I происходит за счет ионизующего действия космических лучей, рентгеновских квантов и суммарного фотонного излучения звезд. При этом в первую очередь ионизуются атомы углерода. Излучение ионизованного углерода является основным механизмом охлаждения газа в зонах Н I. В результате должно установиться равновесие между потерей энергии и ее поступлением, которое имеет место при двух температурных режимах, осуществляющихся в зависимости от значения плотности. Первый из них, когда температура устанавливается в несколько сотен градусов, реализуется в разово-пылевых облаках, где плотность относительно велика, второй - в пространстве между ними, в котором разреженный газ нагревается до нескольких тысяч градусов. Области с промежуточными значениями плотности оказываются неустойчивыми и первоначально однородный газ неизбежно должен разделиться на две фазы - сравнительно плотные облака и окружающую их весьма разреженную среду. Таким образом, тепловая неустойчивость является важнейшей причиной «клочковатой» и облачной структуры межзвездной среды. Межзвездные линии поглощения. Существование холодного газа в пространстве между звездами было доказано в самом начале XX в. немецким астрономом Гартманом, изучившим спектры двойных звезд, в которых спектральные линии, как отмечалось в § 157, должны испытывать периодические смещения. Гартман обнаружил в спектрах некоторых звезд (особенно удаленных и горячих) стационарные (т. е. не изменявшие своей длины волны) линии H и К ионизованного кальция. Помимо того, что их длины волн не менялись, как у всех остальных линий, они отличались еще своей меньшей шириной. Вместе с тем, у достаточно горячих звезд линии Н и К вообще отсутствуют. Все это говорит о том, что стационарные линии возникают не в атмосфере звезды, а обусловлены поглощением газа в пространстве между звездами. Впоследствии обнаружились межзвездные линии поглощения и других атомов: нейтрального кальция, натрия, калия, железа, титана, а также некоторых молекулярных соединений. Однако наиболее полным спектроскопическое исследование холодного межзвездного газа стало возможным благодаря внеатмосферным наблюдениям межзвездных линий поглощения в далекой ультрафиолетовой части спектра, где сосредоточены резонансные линии важнейших химических элементов, в которых, очевидно, сильнее всего должен поглощать «холодный» газ. В частности, наблюдались резонансные линии водорода (La), углерода, азота, кислорода, магния, кремния и других атомов. По интенсивностям резонансных линий можно получить наиболее надежные данные о химическом составе. Оказалось, что состав межзвездного газа в общем близок к стандартному химическому составу звезд, хотя некоторые тяжелые элементы содержатся в нем в меньшем количестве. Исследование межзвездных линий поглощения с большой дисперсией позволяет заметить, что чаще всего они распадаются на несколько отдельных узких компонентов с различными доплеровскими смещениями, соответствующими в среднем лучевым скоростям ±10 км/сек. Это означает, что в зонах Н I газ сконцентрирован в отдельных облаках, размеры и расположение которых в точности соответствуют пылевым облакам, рассмотренным в конце предыдущего параграфа. Отличие лишь в том, что газа по массе в среднем раз в 100 больше. Следовательно, газ и пыль в межзвездной среде концентрируются в одних и тех же местах, хотя относительная их плотность может сильно меняться при переходе от одной области к другой. Наряду с отдельными облаками, состоящими из ионизованного или нейтрального газа, в Галактике наблюдаются значительно большие по своим размерам, массе и плотности области холодного межзвездного вещества, называемые газово-пылевыми комплексами. Самым близким к нам из них является известный комплекс в Орионе, включающий в себя наряду с многими замечательными объектами знаменитую туманность Ориона. В таких областях, отличающихся сложной и весьма неоднородной структурой, происходит исключительно важный для космогонии процесс звездообразования. Монохроматическое излучение нейтрального водорода. Межзвездные линии поглощения в какой-то степени дают лишь косвенный способ выяснить свойства областей Н I. Во всяком случае, это может быть сделано только в направлении на горячие звезды. Наиболее полную картину распределения нейтрального водорода в Галактике возможно составить только на основании собственного излучения водорода. К счастью, такая возможность имеется в радиоастрономии благодаря существованию спектральной линии излучения нейтрального водорода на волне 21 см. Общее количество атомов водорода, излучающих линию 21 см, настолько велико, что лежащий в плоскости Галактики слой оказывается существенно непрозрачным к радиоизлучению 21 см на протяжении всего лишь 1 кпс. Поэтому если бы весь нейтральный водород, находящийся в Галактике, был неподвижен, мы не могли бы наблюдать его дальше расстояния, составляющего около 3% размеров Галактики. В действительности это имеет место, к счастью, только в направлениях на центр и антицентр Галактики, в которых, как мы видели в § 167, нет относительных движений вдоль луча зрения. Однако во всех остальных направлениях из-за галактического вращения имеется возрастающая с расстоянием разность лучевых скоростей различных объектов. Поэтому можно считать, что каждая область Галактики, характеризующаяся определенным значением лучевой скорости, вследствие доплеровского смещения излучает как бы «свою» линию с длиной волны не 21 см, а чуть больше или меньше, в зависимости от направления лучевой скорости. У объемов газа, расположенных ближе, это смешение иное, и потому они не препятствуют наблюдениям более далеких областей. Профиль каждой такой линии дает представление о плотности газа на расстоянии, соответствующем данной величине эффекта дифференциального вращения Галактики. На 230 изображено полученное таким путем распределение нейтрального водорода в Галактике. Из рисунка видно, что нейтральный водород распределен в Галактике неравномерно. Намечаются увеличения плотности на определенных расстояниях от центра, которые, по-видимому, являются элементами спиральной структуры Галактики, подтверждаемой распределением горячих звезд и диффузных туманностей. На основании поляризации света, обнаруженной у далеких звезд, есть основания полагать, что вдоль спиральных рукавов направлены силовые линии основной части магнитного поля. Галактики, о котором речь еще будет идти в связи с космическими лучами. Влиянием этого поля можно объяснить тот факт, что большинство как светлых, так и темных туманностей вытянуто вдоль спиральных ветвей, само возникновение которых должно быть как-то связано с магнитным полем. Межзвездные молекулы. Некоторые межзвездные линии поглощения были отождествлены со спектрами молекул. Однако в оптическом диапазоне они представлены только соединениями СН, СН+ и CN. Существенно новый этап в изучении межзвездной среды начался в 1963 г., когда в диапазоне длин волн 18 см удалось зарегистрировать радиолинии поглощения гидроксила, предсказанные еще в 1953 г. В начале 70-х годов в спектре радиоизлучения межзвездной среды были обнаружены. линии еще нескольких десятков молекул, а в 1973 г. на специальном ИСЗ «Коперник» была сфотографирована резонансная линия межзвездной молекулы Н2 с длиной волны 1092 Å. Оказалось, что молекулярный водород составляет весьма заметную долю межзвездной среды. На основании молекулярных, спектров проведен детальный анализ условий в «холодных» облаках Н I, уточнены процессы, определяющие их тепловое равновесие, и получены данные о двух тепловых режимах, приведенные выше. Детальное исследование спектров межзвездных молекулярных соединений СН, СН+, CN, Н2, СО, ОН, CS, SiO, SO и других позволило выявить существование нового элемента структуры межзвездной среды - молекулярных, облаков, в которых. сосредоточена значительная часть межзвездного вещества. Температура газа в таких облаках может составлять от 5 до 50 ёК, а концентрация молекул достигать нескольких тысяч молекул в 1 см −3, а иногда и существенно больше. Космические мазеры. В радиоспектре некоторых газово-пылевых облаков вместо линий поглощения гидроксила совершенно неожиданно обнаружились… линии излучения. Это излучение отличается рядом важных особенностей. Прежде всего, относительная интенсивность всех четырех радиолиний излучения гидроксила оказалась аномальной, т. е. не соответствующей температуре газа, а излучение в них очень сильно поляризованным (иногда до 100%). Сами линии чрезвычайно узки. Это означает, что они не могут излучаться обычными атомами, совершающими тепловое движение. С другой стороны, оказалось, что источники гидроксильной эмиссии обладают настолько малыми размерами (десятки астрономических единиц!), что для получения наблюдаемого от них потока излучения необходимо приписать им чудовищную яркость - такую, как у тела, нагретого до температуры 1014−1015 ёK! Ясно, что ни о каком тепловом механизме возникновения таких мощностей не может быть и речи. Вскоре после обнаружения эмиссии ОН был открыт новый тип исключительно ярких «сверхкомпактных» источников, излучающих радиолинию водяных паров с длиной волны 1,35 см. Вывод о необычайной компактности источников эмиссии ОН получается непосредственно из наблюдений их угловых размеров. Современные методы радиоастрономии позволяют определять угловые размеры точечных источников с разрешающей силой в тысячи раз лучшей, чем у оптических телескопов. Для этого используются синхронно работающие антенны (интерферометр), расположенные в различных частях земного шара (межконтинентальные интерферометры). С их помощью найдено, что угловые размеры многих компактных источников менее 3×10−4 секунды дуги! Важной особенностью излучения компактных источников является его переменность, особенно сильная в случае эмиссии Н2О. За несколько недель и даже дней профиль линий совсем меняется. Порой существенные вариации происходят за 5 минут, что возможно только в том случае, если размеры источников не превышают расстояния, которое свет проходит за это время (иначе флуктуации статистически будут компенсированы). Таким образом, размеры областей, излучающих линии Н2О, могут быть порядка 1 а.e.! Как показывают наблюдения, в одной и той же области с размерами в несколько десятых долей парсека может находиться множество источников, часть из которых излучает только линии ОН, а часть - только линии H2O. Единственным известным пока в физике механизмом излучения, способным дать огромную мощность в пределах исключительно узкого интервала спектра, является когерентное (т. е. одинаковое по фазе и направлению) излучение квантовых генераторов, которые в оптическом диапазоне принято называть лазерами, а в радиодиапазоне - мазерами. Компактные источники эмиссии ОН и Н2О, скорее всего, гигантские естественные космические мазеры. Имеются все основания полагать, что космические мазеры связаны с областями, где буквально на наших глазах происходит процесс звездообразования. Они чаще всего встречаются в зонах Н II, где уже возникли молодые массивные и очень горячие звезды спектральных классов О и В. Во многих случаях они совпадают с весьма компактными, богатыми пылью, а потому весьма непрозрачными особыми зонами Н II, которые обнаруживаются только благодаря их тепловому радиоизлучению. Размеры этих зон порядка 0,1 пс, а плотность вещества в сотни раз больше, чем в обычных межзвездных облаках. Причиной их ионизации, очевидно, является ненаблюдаемая горячая звезда, окруженная плотным непрозрачным облаком. Иногда эти объекты наблюдаются в виде точечных источников инфракрасного излучения. Они заведомо должны быть исключительно молодыми образованиями с возрастом порядка десятков тысяч лет. За большее время окружающая только что возникшую горячую звезду плотная газово-пылевая среда должна расширяться под действием светового давления горячей звезды, которая тем самым окажется видимой. Такие звезды, окруженные расширяющейся плотной оболочкой, получили образное название «звёзды-коконы». В этих весьма специфичных, но тем не менее естественных условиях, по-видимому, и реализуется мазерный эффект.

Согласно современным представлениям, звезды образуются путем конденсации весьма разреженной межзвездной газово-пылевой среды. Поэтому, прежде чем рассказать о путях эволюции звезд, нам придется остановиться на свойствах межзвездной среды.

Межзвездный газ был обнаружен в самом начале текущего столетия благодаря поглощению в линиях ионизованного кальция, которое он производит в спектрах удаленных горячих звезд. С тех пор методы изучения межзвездного газа непрерывно улучшались и достигли высокой степени совершенства. В итоге большой многолетней работы, проделанной астрономами, сейчас свойства межзвездного газа можно считать достаточно хорошо известными. Плотность межзвездной газовой среды ничтожна. В среднем в областях межзвездного пространства, расположенных недалеко от галактической плоскости, в 1 см3 находится примерно 1 атом. Напомним, что в таком же объеме воздуха находится 2,7*1019 молекул. Даже в самых совершенных вакуумных камерах концентрация атомов не меньше чем 103 см-3. И все же межзвездную среду нельзя рассматривать как вакуум! Дело в том, что вакуумом, как известно, называется такая система, в которой длина свободного пробега атомов или молекул превышает характерные размеры этой системы. Однако в межзвездном пространстве средняя длина свободного пробега атомов в сотни раз меньше, чем расстояния между звездами. Поэтому мы вправе рассматривать межзвездный газ как сплошную, сжимаемую среду и применять к этой среде законы газовой динамики.

Химический состав межзвездного газа довольно хорошо исследован. Он сходен с химическим составом наружных слоев звезд главной последовательности. Преобладают атомы водорода и гелия, атомов металлов сравнительно немного. В довольно заметных количествах присутствуют простейшие молекулярные соединения (например, CO, CN). Возможно, что значительная часть межзвездного газа находится в форме молекулярного водорода. Развитие внеатмосферной астрономии открыло возможность наблюдения линий молекулярного водорода в далекой ультрафиолетовой части спектра.

Физические свойства межзвездного газа существенно зависят от того, находится ли он в сравнительной близости от горячих звезд или, напротив, достаточно удален от них. Дело в том, что ультрафиолетовое излучение горячих звезд полностью ионизует водород на огромных расстояниях. Так, звезда класса О5 ионизует вокруг себя водород в гигантской области радиусом около 100 пс.

Температура межзвездного газа в таких областях (определяемая как характеристика беспорядочных тепловых движений частиц) достигает 10 тыс. К. При этих условиях мезжзвездная среда излучает отдельные линии в видимой части спектра, в частности красную водородную линию. Эти области межзвездной среды носят название «зоны HII». Однако большая часть межзвездной среды достаточно удалена от горячих звезд. Водород там не ионизован. Температура газа низкая, около 100 К или ниже. Именно здесь имеется значительное количество молекул водорода.

Кроме газа, в состав межзвездной среды входит космическая пыль. Размеры таких пылинок составляют 10-4-10-5 см. Они являются причиной поглощения света в межзвездном пространстве, из-за которого мы не можем наблюдать объекты, находящиеся в галактической плоскости на расстояниях, больших 2–3 тыс. пс. К счастью, космическая пыль, так же как и связанный с ней межзвездный газ, сильно концентрируется к галактической плоскости. Толщина газово-пылевого слоя составляет всего лишь около 250 пс. Поэтому излучение от космических объектов, направления на которые составляют значительные углы с галактической плоскостью, поглощается незначительно.

Межзвездные газ и пыль перемешаны. Отношение средних плотностей газа и пыли в межзвездном пространстве равно приблизительно 100:1. Наблюдения показывают, что пространственная плотность газово-пылевой межзвездной среды меняется весьма нерегулярно. Для этой среды характерно резко выраженное «клочковатое» распределение. Она существует в виде облаков (в которых плотность раз в 10 больше средней), разделенных областями, где плотность ничтожно мала. Эти газово-пылевые облака сосредоточены преимущественно в спиральных ветвях Галактики и участвуют в галактическом вращении. Отдельные облака имеют скорости в 6–8 км/с, о чем уже говорилось. Наиболее плотные из таких облаков наблюдаются как темные или светлые туманности.

Значительное количество сведений о природе межзвездного газа было получено за последние два десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными оыли исследования межзвездного газа на волне 21 см. Что это за волна? Еще в сороковых годах теоретически было предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое «глубокое» квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него электрона. Если моменты ориентированы параллельно, получается один уровень, если антипараллельно – другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см.

Расчеты показывают, что такие переходы между уровнями атома водорода происходят чрезвычайно редко: в среднем для одного атома имеет место один переход в 11 млн. лет! Чтобы почувствовать ничтожную величину вероятности таких процессов, достаточно сказать, что при излучении спектральных линий в оптическом диапазоне переходы происходят каждую стомиллионную долю секунды. И все же оказывается, что эта линия, излучаемая межзвездными атомами, имеет вполне наблюдаемую интенсивность.

Так как межзвездные атомы имеют различные скорости по лучу зрения, то из-за эффекта Доплера излучение в линии 21 см будет «размазано» в некоторой полосе частот около 1420 Мгц (эта частота соответствует длине волны 21 см). По распределению интенсивности в этой полосе (так называемому «профилю линии») можно изучить все движения, в которых участвуют межзвездные атомы водорода. Таким путем удалось исследовать особенности галактического вращения межзвездного газа, беспорядочные движения отдельных его облаков, а также его температуру. Кроме того, из этих наблюдений определяется количество атомов водорода в межзвездном пространстве. Мы видим, таким образом, что радиоастрономические исследования на волне 21 см являются мощнейшим методом излучения межзвездной среды и динамики Галактики. В последние годы этим методом изучаются другие галактики, например туманность Андромеды. По мере увеличения размеров радиотелескопов будут открываться все новые возможности изучения более удаленных галактик при помощи радиолинии водорода.

В конце 1963 г. была обнаружена еще одна межзвездная радиолиния, принадлежащая молекулам гидроксила ОН, с длиной волны 18 см (линия ОН состоит из четырех близких по частотам компонент – 1612, 1665, 1667 и 1720МГц)). Существование этой линии было теоретически предсказано известным советским астрофизиком И.С.Шкловским в 1949 г. В направлении на галактический центр интенсивность этой линии (которая наблюдается в поглощении) оказалась очень высокой. Это подтверждает сделанный выше вывод, что в отдельных областях межзвездного пространства газ находится преимущественно в молекулярном состоянии. В 1967 г. была открыта радиолиния воды Н2О с длиной волны 1,35 см.

За последние 15 лет, протекшие после открытия межзвездной радиолинии ОН, было открыто много других радиолиний межзвездного происхождения, принадлежащих различным молекулам. Среди них особенно большое значение имеет молекула СО, радиолиния которой с длиной волны 2,64 мм наблюдается почти во всех областях межзвездной среды. Есть молекулы, радиолинии от которых наблюдаются исключительно в плотных, холодных облаках межзвездной среды. Довольно неожиданным было обнаружение в таких облаках радиолиний весьма сложных многоатомных молекул, например, СН3НСО, CH3CN и др.

Весьма полезным является то обстоятельство, что соответствующие радиолинии, принадлежащие различным изотопам одной и той же молекулы, имеют довольно заметно различающиеся длины волн. Это позволяет исследовать изотопный состав межзвездной среды, что имеет большое значение для проблемы эволюции вещества во Вселенной. В частности, раздельно наблюдаются такие изотопные комбинации окиси углерода: 12C16 О, 13С16О и 12С18О. Области межзвездной среды, окружающей горячие звезды, где водород полностью ионизован («зоны HII»), весьма успешно исследуются при помощи так называемых «рекомбинационных» радиолиний, существование которых было теоретически предсказано еще до их открытия советским астрономом Н.С.Кардашевым. «Рекомбинационные» линии возникают при переходах между весьма высоко возбужденными атомами (например, между 108 и 107 уровнями атома водорода). Столь «высокие» уровни могут существовать в межзвездной среде только по причине ее чрезвычайно низкой плотности. Заметим, например, что в солнечной атмосфере могут существовать только первые 28 уровней атома водорода; более высокие уровни разрушаются благодаря взаимодействию с частицами окружающей плазмы.

Уже сравнительно давно астрономы получили ряд косвенных доказательств наличия межзвездных магнитных полей. Эти магнитные поля связаны с облаками межзвездного газа и движутся вместе с ними. Напряженность таких полей около 10-5Э, т.е. в 100 тыс. раз меньше напряженности земного магнитного поля на поверхности нашей планеты. Общее направление магнитных силовых линий совпадает с направлением ветвей спиральной структуры Галактики. Можно сказать, что сами спиральные ветви представляют собой гигантских размеров магнитные силовые трубки.

В конце 1962 г. факт существования межзвездных магнитных полей был установлен английскими радиоастрономами путем прямых наблюдений. С этой целью исследовались весьма тонкие поляризационные эффекты в радиолинии 21 см, наблюдаемой в поглощении в спектре мощного источника радиоизлучения – Крабовидной туманности. Если межзвездный газ находится в магнитном поле, можно ожидать расщепления линии 21 см на несколько компонент, отличающихся поляризацией. Так как величина магнитного поля очень мала, это расщепление будет совершенно ничтожным. Кроме того, ширина линии поглощения 21 см довольно значительна. Единственное, что можно ожидать в такой ситуации, – это небольшие систематические различия поляризации в пределах профиля линий поглощения. Поэтому уверенное обнаружение этого тонкого эффекта – замечательное достижение современной науки. Измеренное значение межзвездного магнитного поля оказалось в полном соответствии с теоретически ожидаемым согласно косвенным данным.

Для исследований межзвездных магнитных полей применяется и радиоастрономический метод, основанный на изучении вращения плоскости поляризации радиоизлучения внегалактических источников при его прохождении через «намагниченную» межзвездную среду («явление Фарадея»). Этим методом уже сейчас удалось получить ряд важных данных о структуре межзвездных магнитных полей. В последние годы в качестве источников поляризованного излучения для измерения межзвездного магнитного поля таким методом используются пульсары.

Межзвездные магнитные поля играют решающую роль при образовании плотных холодных газово-пылевых облаков межзвездной среды, из которых конденсируются звезды.

С межзвездными магнитными полями тесно связаны первичные космические лучи, заполняющие межзвездное пространство. Это частицы (протоны, ядра более тяжелых элементов, а также электроны), энергии которых превышают сотни миллионов электронвольт, доходя до 1020–1021 эВ. Они движутся вдоль силовых линий магнитных полей по винтовым траекториям. Электроны первичных космическнх лучей, двигаясь в межзвездных магнитных полях, излучают радиоволны. Это излучение наблюдается нами как радиоизлучение Галактики (так называемое «синхротронное излучение»). Таким образом, радиоастрономия открыла возможность изучать космические лучи в глубинах Галактики и даже далеко за ее пределами. Она впервые поставила проблему происхождения космических лучей на прочный научный фундамент.

Масса межзвездного газа в нашей Галактике близка к миллиарду солнечных масс, что составляет немногим больше 1% от полной массы Галактики, обусловленной в основном звездами. В других звездных системах относительное содержание межзвездного газа меняется в довольно широких пределах. У эллиптических галактик оно очень мало, около 10-4% и даже меньше, в то время как у неправильных звездных систем (типа Магеллановых Облаков) содержание межзвездного газа доходит до 20 и даже 50%. Это обстоятельство тесно связано с вопросом об эволюции звездных систем.

Образование звезд и других объектов Вселенной происходит путем ряда преобразований, происходящих с межзвездной газопылевой средой. Известно, что она заполнена так называемым межзвездным газом.

В настоящее время состав и свойства межзвездного газа изучены достаточно хорошо, хотя впервые о его существовании люди узнали лишь в начале XX века.

Межзвездный газ - сплошная сжимаемая среда, к которой применимы законы газовой динамики. Известно, что концентрация вещества в нем составляет примерно 1 атом на 1 см 3 . На первый взгляд, можно предположить, что межзвездный газ на самом деле является вакуумом. и приведенное определение нецелесообразно (к сведению, концентрация вещества в вакууме составляет 10" атомов па 1 см 4). Но по определению вакуум — это система, в которой длина свободного пробега атомов или молекул превышает ее характерные размеры. Во Вселенной же длина свободного пробега частиц во много сот раз меньше расстояния между звездами.

Физические свойства межзвездной среды

Наиболее важным свойством межзвездной среды является наличие в ней магнитных полей. Доказано, что они движутся с облаками межзвездного газа. Именно благодаря магнитным полям образуются плотные холодные газопылевые облака, из которых впоследствии конденсируются звезды.

Силовые линии межзвездных магнитных полей сонаправлены ветвям спиральной структуры Галактики. Напряженность этих полей более чем в 100 тыс. раз меньше напряженности магнитного поля Земли на ее поверхности.

Магнитные поля находятся в тесной связи с космическим излучением, которое представляет собой поток протонов, электронов и ядер более Тяжелых элементов. Эти частицы движутся винтообразно вдоль силовых линий магнитных полей. Благодаря тому, что они излучают радиоволны, стало возможным исследовать качественный состав межзвездной среды и находящихся в ней объектов.

Химический состав межзвездного газа

Исследование химического состава межзвездного газа началось в средине XX в. благодаря развитию радиоастрономических методов исследований. Первым элементом, обнаруженным в межзвездном газе, был водород. Сейчас известно, что он составляет значительную часть межзвездного газа и находится в молекулярном виде. Кроме того, межзвездный газ содержит атомы гелия, ряда металлов, а также более сложные соединения,

Исследование спектров излучения позволяет установить изотопный состав межзвездного газа, поскольку различные изотопы одного и того же элемента испускают излучение различной длины волны.

По мере развития галактик количество межзвездной среды в них неуклонно убывает, поскольку затраченное на образование звезд вещество не возвращается в межзвездную среду в полном объеме. Довольно большая его часть остается в недрах «мертвых» белых карликов, нейтронных звезд и черных дыр.

Следует отметить, что кругооборот межзвездного газа приводит к изменению его химического состава. Находясь в недрах звезд и принимая участие в термоядерных реакциях, межзвездный газ обогащается гелием и тяжелыми элементами. Содержание же водорода в нем значительно снижается. Таким образом, прошедший эволюционный цикл звезды межзвездный газ возвращается в межзвездную среду, включая ничтожные количества водорода и значительные - тяжелых и сверхтяжелых элементов, а также гелия. Однако этот процесс происходит крайне медленно. Например, за время существования нашей Галактики только очень массивные звезды успели пройти весь эволюционный цикл.

Газ, всюду газ! Собранный в гигантские раскаленные шары, он образует бесчисленные звезды - в них сосредоточена главная масса вещества во Вселенной. Разреженный холодный газ, заполняющий огромные пространства в виде газовых туманностей, обволакивающий десятки звезд, газ, образующий атмосферы планет! И все это в безвоздушном пространстве. Но подлинно ли в безвоздушном?

Наши понятия о вакууме, о безвоздушном пространстве относительны. В электрической лампочке старого типа «нет воздуха», говорим мы, он оттуда выкачан. Сравнительно с комнатным воздухом там вакуум. Но физик с помощью своих лучших насосов может так выкачать воздух из какой-либо стеклянной трубки, что по сравнению с пространством в ней пространство внутри электрической лампы кишит мириадами молекул.

Газовые диффузные туманности с их плотностью порядка 10 -19 г/см³ раскинулись в безвоздушном пространстве. Но и оно, как мы убеждаемся, не совершенно пусто, в нем тоже есть газ. Газ ничтожной плотности, но все же газ, и между любыми двумя звездами есть газовая среда, как бы разрежена она ни была.

Но какой это газ? Это, конечно, не земной воздух, хотя бы и разреженный. История изучения этого газа принесла много интересного и неожиданного.

В 1904 г., изучая спектрально-двойную звезду Дельту Ориона, Гартман для большей точности определения ее лучевой скорости измерял положение в спектре всех темных линий, которые в нем были видны. Ведь если звезда движется как целое по своей орбите около центра тяжести системы, то все линии ее спектра должны смещаться одинаково в том смысле, что в пределах ошибок измерения смещение любой линии спектра должно соответствовать одной и той же скорости приближения или удаления от нас. Мы уже знаем, что при таком периодическом орбитальном движении линии спектра периодически же изменяют свое смещение. В спектре Дельты Ориона все линии вели себя «как следует», кроме линий ионизованного кальция. Эти две линии почему-то не участвовали в общем периодическом колебании положения линий в спектре, а упрямо стояли на месте. Неслась ли звезда на нас, удалялась ли она от нас в данный момент - линиям кальция это было безразлично.

Упрямые линии принадлежали атомам кальция, и Гартману ничего не оставалось, как заключить, что кальций почему-то не участвует в орбитальном движении звезды. Раз линии кальция видны как темные (в поглощении), то, очевидно, свет звезды проходит через него, поглощается в нем, но этот элемент не находится в атмосфере звезды, вызывающей появление в спектре остальных линий поглощения. Атмосфера звезды движется вместе со звездой, кальций же с ней не движется. Быть может, наша двойная звезда погружена в обширное облако разреженного кальция, в котором она и движется, не увлекая его с собой?

Такого рода линии кальция назвали стационарными, т. е. неизменными, неподвижными. В дальнейшем в спектрах многих других спектрально-двойных звезд были открыты стационарные линии кальция, но лишь в тех случаях, когда звезды были раннего спектрального класса B.

Слайфер, однако, нашел более вероятным, что стационарные линии производятся не облаком кальция, в которое погружена звезда, а облаками кальция или его непрерывной массой, расположенной на всем пути луча света от звезды к нам. Другими словами, кальций не околозвездный, а межзвездный газ. Этот взгляд был подтвержден. Тогда вместо «стационарные линии» стали говорить «межзвездные линии».

Выяснилось это так. Когда стало известно, что температура атмосферы звезды определяет вид ее спектра, стало возможно теоретически определять интенсивности разных линий, создаваемых атмосферой звезды определенного химического состава и определенной температуры. Выяснилось, что такие горячие звезды, как звезды класса В, не содержат в своей атмосфере атомов ионизованного кальция - для них там слишком горячо. Весь кальций там уже дважды ионизован, и его линий в спектре быть не может. Значит, ионизованный кальций, производящий в спектре горячих звезд стационарные линии, должен быть далеко от звезды, там, где не так горячо и где он может существовать.

Затем обнаружилось, что вовсе не одни лишь спектрально-двойные звезды обнаруживают эти линии кальция, - он есть в спектрах большинства горячих одиночных звезд. Там его линии вообще нельзя назвать стационарными, потому что одинокая звезда не совершает орбитального движения. По отношению к нам она движется постоянно с одной и той же скоростью, поэтому все линии ее спектра смещены по принципу Доплера на величины, соответствующие одной и той же скорости. Однако оказалось, что у таких горячих звезд смещение линий ионизованного кальция соответствует совершенно другой скорости , чем та скорость, с которой движется сама звезда.

Если ионизованный кальций заполняет все межзвездное пространство, то его линии, смещенные, как мы видим, всегда особенным образом, должны присутствовать в спектрах звезд любого типа. К сожалению, более холодные звезды сами содержат в своей атмосфере ионизованный кальций, а потому и его линии в спектре. Эти линии широки и сильны и маскируют тонкие, слабые линии межзвездного кальция. В некоторых случаях все же удалось обнаружить эти тонкие «межзвездные» линии, наложенные на более широкие «звездные» линии спектра.

Решающим оказалось выполненное в Канаде Пласкеттом и Пирсом сопоставление интенсивности линий межзвездного кальция с расстоянием до звезд. Чем звезда дальше, тем интенсивнее ее линии межзвездного кальция. Но так и должно быть, если кальций заполняет всю межзвездную среду. Чем дальше от нас звезда, тем длиннее путь ее луча, прежде чем он дойдет до нас, и тем больше поглощающих атомов кальция он встретит на своем пути. Чем больше атомов кальция поглотит свет звезды, тем больше он ослабится и тем темнее и интенсивнее будет линия поглощения в спектре. С этим объяснением пришлось согласиться.

Мало того, теперь мы имеем возможность, установив из наблюдений связь между интенсивностью линий ионизованного кальция и известными расстояниями до звезд, определять по интенсивности этих линий расстояние до тех горячих звезд, для которых они еще не известны. Спасибо межзвездному кальцию! - должны сказать мы во многих случаях, так как часто у нас не бывает другого способа определить расстояние до какой-нибудь звезды.

Пласкетт и Пирс сумели также доказать, что межзвездный кальций участвует в том общем вращении, которым охвачены все звезды нашей звездной системы. Сопоставляя лучевые скорости звезд, вызванные этим вращением, с лучевой скоростью межзвездного кальция (по сдвигу его линий в спектрах тех же звезд ), убедились, что последняя вдвое меньше, чем та лучевая скорость, которая следует для данной звезды по теории вращения Галактики. Но вдвое меньшую скорость относительно Солнца при вращении Галактики должна иметь точка, вдвое более близкая. Вывод отсюда один: межзвездный кальций участвует во вращении всей звездной системы, вместе со звездами и по тем же законам, так как центр тяжести того столба газа, который находится между любой звездой и нами, во всех случаях совпадает с его серединой. Это значит, что в пространстве между звездами кальций расположен довольно равномерно.

Впрочем, позднее выяснилось, что, как и космическая поглощающая пыль, кальций концентрируется к плоскости Млечного Пути. Выяснилось и то, что он расположен не непрерывной средой, а скорее в виде многочисленных облаков. Размеры некоторых облаков кальция доходят до 2000 световых лет.

Пока свойства атомов не были хорошо изучены физиками, исключительное или по крайней мере преобладающее нахождение именно кальция между звездами вызывало недоумение. Потом выяснилось, что ионизованный кальций поглощает свет главным образом в тех двух своих линиях, которые находятся в легко наблюдаемой части спектра. Атомы других элементов поглощают свет либо в очень многих линиях, как, например, железо, либо в такой области спектра (ультрафиолетовой), которая недоступна для изучения из-за его полного поглощения в нашей атмосфере. Поэтому-то линии других межзвездных атомов, если они и есть, либо вообще не могут быть обнаружены, либо они менее заметны, потому что их общее поглощение разбивается на много разных поглощений - в каждой линии понемногу. Таким образом, нет оснований считать ионизованный кальций единственным или преобладающим газом в межзвездных недрах, он только заявляет о своем присутствии «крикливее» других.

Можно все же попытаться найти и другие межзвездные газы, хотя бы слабые следы их, - «кто ищет, тот всегда найдет!». И действительно, после специальных поисков в спектрах звезд был найден межзвездный натрий, а в самые последние годы обнаружили еще нейтральный кальций, ионизованный титан, нейтральный калий и даже железо! Кроме того, в конце тридцатых годов были найдены еще межзвездные молекулы нейтрального и ионизованного углеводорода CH и CH + , циана CN, NaH, а также некоторые линии неизвестного еще пока происхождения. Средняя плотность поглощающего межзвездного газа в несколько тысяч раз меньше плотности излучающих свет газовых туманностей.

Все, что известно сейчас о межзвездном газе, хорошо укладывается в единую теоретическую картину, рисующую физику газовых туманностей следующим образом.

Атомы газа, так или иначе попавшего в межзвездное пространство, ионизуются и возбуждаются квантами света, излучаемого звездами. С этими квантами они изредка сталкиваются. Мы сказали - изредка, потому что вдали от звезд через квадратный сантиметр поверхности проходит очень мало этих квантов. Так же редко происходит встреча иона со свободным электроном, при которой он восстанавливает свою структуру, реже, чем в газовых туманностях с их большей плотностью. Пока атом ионизованного кальция странствует в пространстве, терпеливо ожидая встречи с каким-либо заблудшим электроном, на него может налететь какой-нибудь квант света звезды, соответствующий длине волны 3933 Å, и возбудить его до высшего энергетического состояния. Не будучи в состоянии переживать такое возбуждение дольше одной десятимиллионной доли секунды, атом вернется к исходному нормальному или невозбужденному, состоянию. При этом он излучит обратно поглощенный было им квант энергии с длиной волны 3933 Å. Но его он пошлет уже не в том направлении, откуда получил, а в каком-либо ином. Так ион кальция, находящийся между нами и звездой, перехватывая кванты ее света, идущие к нам, будет их отбрасывать то туда, то сюда, будет рассеивать свет, и до нас его дойдет меньше, чем дошло бы без этого вмешательства. В результате в этой длине волны свет звезды ослабится, и в ее спектре мы увидим темную линию. Подобно этому ведут себя и другие межзвездные атомы.

Зная структуру атомов и их способность к поглощению, можно по интенсивности линий оценить их число на пути звездного луча, а зная расстояние до звезды, вычислить и плотность межзвездного газа.

Первые шаги, сделанные в этом направлении, дают для межзвездного ионизованного кальция плотность порядка 4·10 -32 г/см³. Полная же плотность межзвездного газа значительно больше и по оценке Эддингтона составляет не менее 10 -24 г/см³. Если бы этот газ состоял из одного лишь водорода, то при такой плотности в одном кубическом сантиметре содержалось бы только по одному атому, тогда как в таком же объеме комнатного воздуха их содержится десять миллиардов миллиардов!

В действительности дело почти так и обстоит, так как водород на самом деле является главной составной частью межзвездного газа. Следующее за ним место занимают кислород и натрий, но на водород приходится более 90% атомов всей межзвездной среды, включая космическую пыль и метеориты. На долю последних приходится, как оказывается, ничтожная доля массы всей межзвездной среды и больше всего в ней весит самый легкий из газов!

К сожалению, межзвездный водород в поглощении не обнаружен оптическими методами и едва ли даже будет обнаружен, потому что в большинстве уголков нашей Вселенной подавляющее число атомов водорода находится в невозбужденном состоянии и потому поглощает энергию в невидимой далекой ультрафиолетовой области спектра.

Некоторая надежда увидеть знакомые линии водорода, но не в поглощении, а в излучении, все же есть. Они могут возникать, когда свободные электроны будут захватываться ядрами водорода и возвращаться к ближайшей к ядру орбите с наименьшей энергией каскадами - со ступеньки на ступеньку, задерживаясь на время на второй от ядра орбите. Такие случаи будут не часты, и излучение ярких линий межзвездного водорода должно быть слабым.

Путем многочасовых экспозиций О. Струве удалось обнаружить в некоторых обширных областях Млечного Пути слабые линии излучения водорода. Это и есть сигнал в видимых лучах от межзвездного водорода, но автор этой книги думает, что нередко мы тут имеем дело с проекцией друг на друга больших, далеких от нас и очень разреженных диффузных газовых туманностей. Будучи слабы и неразличимы по отдельности, они-то и создают впечатление неопределенно широкой излучающей водородной области H II.

Это подтверждается тем, что, кроме линий водорода, в тех же областях неба были обнаружены яркие линии запрещенного азота и кислорода, т. е. был получен обычный спектр газовых туманностей. К тому же в этих областях были как раз обнаружены и горячие звезды спектрального класса О, которые всегда возбуждают свечение газовых туманностей.

Однако не только существование, но и распределение в пространстве, и скорости движения межзвездного водорода в настоящее время надежно установлены по его радиоизлучению. Подробнее об этом мы расскажем в главе 10.

По оценке Дэнхема и О. Струве плотность отдельных газов в межзвездном пространстве, определенная по интенсивности как линий поглощения, так и излучения, такова:

Для межзвездного вещества, на основании анализа наблюдаемого движения звезд, нельзя допустить плотность больше чем 6·10 -24 г/см³, и вероятнее всего именно эта величина, совпадающая с оценкой, приведенной выше. Любопытно, что по некоторым оценкам средняя плотность межпланетного пространства в Солнечной системе, если иметь в виду его заполнение метеоритной материей, составляет 5·10 -25 г/см³. Это даже меньше, чем плотность межзвездного пространства. По оценке Гринстейна плотность межзвездной пыли (исключая газ) составляет 2·10 -25 г/см³. Так, вероятно, пыль между звездами по своей массе уступает место межзвездным газам!

В 1932 г. американский радиофизик Янский обнаружил радиоизлучение Млечного Пути. В метровом диапазоне оно очень сильно. Как выяснилось, это радиоизлучение имеет два источника. Одним из них является скопление в полосе Млечного Пути множества газовых туманностей. Мы видим из них только самые близкие или самые яркие. Видеть их далеко от нас мешает и поглощение света космической пылью. Но радиоволны эта пыль почти не задерживает и радиоизлучение далеких туманностей сливается в сплошной «радиошум» вдоль полосы Млечного Пути. Составлены карты неба, показывающие его «яркость» в разных местах в радиодиапазоне на разных длинах волн.

Другим источником радиоизлучения является торможение релятивистских электронов в межзвездных магнитных полях. Существование межзвездных магнитных полей строго доказано к середине шестидесятых годов. Релятивистские электроны входят и в состав космических лучей. Как мы уже говорили, при торможении релятивистских электронов в магнитном поле возникает излучение, в частности, в радиодиапазоне.

Водород ионизуется горячими звездами, которых мало и которые образуют сравнительно тонкий слой, заполняя его далеко не целиком. Дальше от слоя и в этом слое, но ближе к центру нашей звездной системы, горячих звезд и ионизованного водорода тоже нет. Там везде водород может быть, но он будет не ионизован. И.С. Шкловский предвычислил, что нейтральный водород должен испускать в радиодиапазоне линию излучения с длиной волны 21 см и что она должна быть достаточно яркой для ее обнаружения радиотелескопами. Наблюдения вскоре это подтвердили. Так холодный невидимый нейтральный водород стал доступен для изучения почти во всем объеме нашей звездной системы. Ведь на энергию волн длиной 21 см поглощение межзвездной пылью не влияет!

По смещению линии излучения, испускаемой облаком нейтрального водорода, можно установить скорость облака по лучу зрения. Зная закон вращения нашей звездной системы и скорость облака, можно вычислить и расстояние до него. По интенсивности линии определяют плотность облаков, а изучение их распределения в пространстве чрезвычайно обогащает наше представление о строении нашей звездной системы. В нашей Галактике молекулярного водорода H 2 почти столько же по массе, сколько атомарного: около 10 9 масс Солнца.

Пыль, межзвездный газ и горячие диффузные туманности концентрируются в плоском слое толщиной около 600 световых лет, что мало сравнительно с размерами всей нашей звездной системы. Но отдельные облака горячего и холодного газа встречаются и на больших расстояниях от этого слоя, где они имеют значительные хаотические движения.

В 1963 г. радиотелескоп принес открытие в межзвездном пространстве радиолинии гидроксила ОН. Возможность ее наблюдения предсказывалась. Ее длина волны около 18 см. Линия эта сложная и состоит из нескольких компонент. Она наблюдается и в поглощении, и в излучении, обычно в области горячих газовых туманностей, но далеко не всех. Комплекс линий ОН обнаружил ряд пока еще крайне загадочных явлений. В частности, обнаружилась переменность яркости, очень различная у разных компонент линии ото дня ко дню. Будущее развитие науки вскоре, вероятно, даст объяснение этим загадкам.

Инфракрасными наблюдениями был обнаружен межзвездный гелий, а в 1965-1966 гг. он же был обнаружен и в радиоизлучении. Одна из главных его линий излучения имеет длину волны около 6 см, а другая находится вблизи радиолинии водорода с длиной волны 21 см.

В общем к 1980 г., помимо атомов, в межзвездном пространстве, преимущественно методами радиоастрономии, открыто почти 50 молекул, двух- и многоатомных. Среди последних есть сложные, содержащие до 11 атомов. В их числе есть вода, аммиак, муравьиная кислота и метиловый спирт. Обнаружены также типичные для состава комет CO, CN.

К 1980 г. стало возможно заключить, что содержание разных химических элементов в межзвездном газе заметно отличается от процента их в газах, содержащихся в атмосферах звезд и Солнца, хотя часть этих атмосфер постепенно рассеивается в пространстве, а часть межзвездной среды аккумулируется на звездах, захватывается ими (аккреция газов). Например, в некоторых направлениях обнаружен недостаток многих атомов - по отношению к водороду их число там в 3 и более раз меньше, чем в атмосфере Солнца. Такие аномалии носят, однако, местный характер.

Как могло межзвездное пространство наполниться газом? Что старше - рассеянный межзвездный газ и туманности или же звезды? К этому вопросу мы вернемся в главе 11.